Evaluation of LC-MS/MS Scrambling Ratios for Deuterium-Labeled Vitamin D Metabolites, Steroids and Other Compounds of Clinical Significance

Authors: Joshua Cooper, Huahua Jian, Derrell Johnson, Isil Dilek, and Uma Sreenivasan Cerilliant Corporation, 811 Paloma Drive, Suite A, Round Rock, TX

Abstract

Introduction and Objective: A significant clinical challenge with LC-MS/MS is the potential for matrix effects that cause interferences or impact ionization efficiency. Stable isotope-labeled internal standards are frequently used to compensate for matrix effects and to increase the accuracy of quantitation. The use of a labeled internal standard that co-elutes with the drug being monitored can potentially offset patient specific matrix effects (co-eluting concomitant medication, etc.) that may occur at the retention time of the analyte of interest. Complications in the use of deuteriumlabeled internal standards can arise from hydrogen-deuterium scrambling in the collision cell at the selected transitions or in the ion source. In this study, we examined deuterium labeled 25-Hydroxyvitamin D, testosterone, and other compounds of clinical significance by LC-MS/MS at multiple transitions. We investigated reproducibility of the scrambling ratio and influences on scrambling of different LC-MS systems (tandem quadrupole vs. quadrupole timeof-flight), matrix selection, concentration, and deuterium placement in the internal standard.

Methods and Procedures

LCMS System 1

Instrument: Waters Alliance UPLC-Xevo G2 Q-Tof Column: Waters Acquity UPLC, BEH C18, 1.7µm, 2.1 x 50mm

25-Hydroxyvitamin D Analysis Conditions:

UPLC Conditions: 0.4mL/min, gradient, 0.1:99.9 to 99.9:01 (0.1% formic acid in acetonitrile:0.1% formic acid in water) MS Conditions: ESI+, Cone 25V, Capillary 2.5kV, CE 20

Testosterone Analysis Conditions:

UPLC Conditions: 0.4mL/min, isocratic, 30:70 (0.1% formic acid in acetonitrile:0.1% formic acid in water) MS Conditions: ESI+, Cone 30V, Capillary 3.0kV, CE 18

LCMS System 2

Instrument: Agilent 1100 HPLC-6410 triple quad Column: Phenomenex Kinetex, C18, 3µm, 2.1 x 50mm

25-Hydroxyvitamin D Analysis Conditions:

HPLC Conditions: 0.4mL/min, isocratic, 80:20 (0.1% formic acid in methanol:0.1% formic acid in water) MS Conditions: ESI+, Fragmentor 110V, Capillary 4.0kV, CE 5

Testosterone Analysis Conditions:

UPLC Conditions: 0.4mL/min, isocratic, 30:70 (0.1% formic acid in acetonitrile:0.1% formic acid in water) MS Conditions: ESI+, Fragmentor 50V, Capillary 4.0kV, CE 10

Solution Standards Used:

25-Hydroxyvitamin D3, Cat# H-083 25-Hydroxyvitamin D3-d₆, Cat# H-074 25-Hydroxyvitamin D2, Cat# H-073 Testosterone, Cat# T-037 Testosterone- d_3 , Cat# T-046 Testosterone- $^{13}C_3$, Cat# T-037 Progesterone- d_9 , Cat# P-070

Pregabalin-d₆, Cat# P-072

Serum Extraction: 200µL of sample in serum + 200µL of methanol, vortexed to mix. Added 1 mL of heptane, vortexed for 30sec, Centrifuged for 4min at 3000rpm 900µL of top layer dried under nitrogen Reconstituted in 100µL of ethanol

25-Hydroxyvitamin D2

25-Hydroxyvitamin D2- d_3

25-Hydroxyvitamin D2- d_{ϕ}

25-Hydroxyvitamin D3

25-Hydroxyvitamin D3- d_6

Testosterone

Testosterone- d_3 , 292 \rightarrow 255

Testosterone- d_3 , 292 \rightarrow 256

Testosterone- $^{13}C_3$, 292 \rightarrow 255

Testosterone- $^{13}C_3$, 292 \rightarrow 256

Testosterone, 289→252

Testosterone, 289→253

W07071105

Testosterone Chromatograms on 6410

Testosterone Chromatograms on Xevo G2

0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50

0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50

0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50

100µg/mL Testosterone

 $100 \mu g/mL$ Testosterone- $^{13}C_3$

 $100\mu g/mL$ Testosterone- d_3

Labeled 25-Hydroxyvitamin D2 and D3 Scrambling in Serum

Compound	Label	System	Concentration µg/mL	Transition d_{n-1}	Transition $d_{\rm n}$	Scrambling % d _{n-1} / d _n
		Value CO	2	398→379	398→380	
		Xevo G2	0.2	398→379	d_n $398 \rightarrow 380$ $398 \rightarrow 380$ $416 \rightarrow 398$ $416 \rightarrow 380$ $398 \rightarrow 380$ $416 \rightarrow 398$	35.4
				416→397	416→398	% d _{n-1} / d̄ _n 880 28.6 880 35.4 898 2.8 880 30.4 898 2.8 880 30.4 898 2.8 880 30.5 401 2 883 5.9 401 2 883 9 883 5.4 889 4 871 18.8
	٦		5	416→379	416→380	
	d_3	6410		398→379	398→380	
		0410		416→397	416→398	
05 Hydraya sitamia D0		50 416→	416→379	416→380	20	
25-Hydroxyvitamin D2				398→379	398→380	30.5
				419→400	419-401	2
			5	419→382	419→383	8.8
	ا			401→382	401→383	5.9
	d_6	6410		419→400	419-401	
			50	419→382	419→383	9
				401→382	401→383	5.4
				407→388	407→389	4
25-Hydroxyvitamin D3	d_{6}	6410	2.5	407→370	407→371	18.8
				389→370	$389 \rightarrow 371$	9.2

Vitamin D in Serum on 6410

25-Hydroxyvitamin

Vitamin D in EtOH Scrambling on Xevo G2

Investigation of Method, Instrument, and Concentration Effects on Scrambling for Vitamin D

-			•			
Compound	Method	Instrument	Concentration µg/mL	Transition d_{n-1}	Transition d_n	Scrambling % d_{n-1} / d_n
	Infusion	10				29.7
	Intusion	Q-Tof	5	398→379	398→380	30.9
d_3 labeled 25-			10			27.1
Hydroxyvitamin D2		6410	100			30.4
			33			30.2

Comparisons of 25-Hydroxyvitamin D2 and D3 Deuterium Scrambling

Transitions Comparisons for Native and Labeled 25-Hydroxyvitamin D2 and D3 in EtOH on 6410

Parent → Water loss						
	Compound	Label	Concentration µg/mL	Transition d_{n-1}	Transition d_n	Scrambling % d _{n-1} / d _n
	25-Hydroxyvitamin	d_3	100	416→397	416→398	2.9
	D2	d_{6}	100	419→400	419-401	2
		native	50	413→394	413→395	0.5
	25-Hydroxyvitamin	d_6	50	407→388	407→389	4
	D3	native	100	401→382	401→383	0.5

Parent → 2 Water	losses				
Compound	Label	Concentration µg/mL	Transition d_{n-1}	Transition d_n	Scramblir % d _{n-1} / a
05 Hydroxa ditamin	d_3	100 416		416→380	19.5
25-Hydroxyvitamin D2	d_6	100	419→382	419→383	8.9
5 –	native	50	413→376	413 - 377	0.5
25-Hydroxyvitamin	d_6	50	407→370	407 - 371	18.9
D3	native	100	401→364	401→365	0.3

Water Loss → 2 Water losses						
Compound	Label	Concentration µg/mL	Transition d_{n-1}	Transition d_n	Scrambling % d _{n-1} / d _n	
0511 de la	d_3	100	398→379	398→380	30.4	
25-Hydroxyvitamin D2	d_6	100	401→382	401→383	5.4	
	native	50	398→376	398→377	0.4	
25-Hydroxyvitamin	d_6	50	389→370	389→371	11.2	
D3	native	100	383→364	383→365	0.3	

Notes: 25-Hydroxy D2-D6 water loss→2 water loss has same transition as 25-Hydroxyvitamin D3 parent—water loss. Can be problem if compounds are not well resolved chromatographically

Selection of Transitions Greatly Impacts Observed Scrambling

5µg/mL Infusion at 20µL/min of d_3 labeled 25-Hydroxyvitamin D2 on Xevo G2

Transition d _{n-1}	Transition d_{n}	Scrambling d_{n-1} / d_n
416→397	416→398	2.2
416→379	416→380	16.9
398→379	398→380	30.9

Note: Under optimized UPLC-Q-Tof conditions only water loss MS ions were detected. MS ion ratios changed for 25-Hydroxyvitam D when combined with mobile phase. Could detect ions without water loss when

Investigation of Testosterone Scrambling

Testosterone-13C₃

Testosterone- d_3

Testosterone Scrambling Comparison

	Label	Method	Instrument	Concentration µg/mL	Transitions D_{n-1} or ${}^{13}C_{n-1}$	Transitions D _n or ¹³ C _n	*Scrambling % D _{n-1} / D _n	
		Infusion		10	292→255	292→256	31.9	
			Q-Tof	100			36.5	
	d_3	LC		10			35.7	
			LC 6410	100			37.7	
				10			36.3	
	13C ₃			100			0.1	
	native			100	289→252	289→253	0.0	
,	* or Scrambling % 13C _{n-1} / 13C _n							

Major transitions are: Native: 289→97 & 289→109 Testosterone- d_3 : 292 \rightarrow 97 & 292 \rightarrow 109 Testosterone- ${}^{13}C_3$: 292 \rightarrow 100 & 292 \rightarrow 112 No scrambling at major transitions

Testosterone Scrambling at m/z 253

W07071105 329 (3.640) Cm (326:333) 2: TOF MS ES+

Testosterone Scrambling at 97 and 109

Testosterone d_{n-2} / d_n Scrambling

Label	Method	Instrument	Concentration µg/mL	Transition d_{n-2}	Transition d_n	Scrambling % d_{n-2} / d_n
d_3	Infusion	Q-Tof	10	292→254	292→256	2.6
d_3	LC	Q-Tof	100	292→254	292→256	3.6
d_3	LC	Q-Tof	10	292→254	292→256	<lod< th=""></lod<>

Scrambling for other clinical compounds

Xevo G2 Scrambling Infusion Experiments

Compound	Label	Transition d_{n-1}	Transition d_{n}	Scrambling % d_{n-1} / d_{n}	Transition d_{n-1}
		324→305	324→306	20	19
Dragastarana	d9	324→287	324→288	77	19
Progesterone		324→112	324→113	0	19
		324→99	324→100	0	19
		166→147	166→148	0	25
Dragalagia	d ₆	166→129	166→130	0	25
Pregabalin		166→102	166→103	12	25
		166→88	166→89	40	25

Progesterone- d_{φ}

Pregabalin- d_{δ}

CONCLUSIONS

• Scrambling was observed on both the Agilent 6410 triple quadrupole and the Waters Xevo G2 Q-Tof, and in some cases was very pronounced.

1: TOF MS ES+

1: TOF MS ES+

1.57e6

- For a specific transition, scrambling ratios were consistent between solvent and serum. No matrix effects on scrambling.
- Direct infusion can provide rapid and accurate determination of scrambling ratios. Infusion and chromatographic injection results were consistent.
- It may be advisable to investigate at higher concentrations than normally analyzed to ensure that instrument sensitivity does not impact accuracy of scrambling determination.
- Awareness of potential scrambling is important for proper internal standard selection. Scrambling may be mitigated or eliminated by altering instrument conditions and transition
- Deuterium-labeled internal standards are a viable option for LC-MS/MS analysis with selection of the appropriate transition. Deuterated standards can be more cost effective than ¹³C labeled internal standards, more widely available and with lower cost per test. ¹³C labeled internal standards are most effective when deuterium scrambling issues can not be resolved.