Mitigation of Deuterium Scrambling in Stable-Labeled Internal Standards during LC-MS/MS Analysis

Authors: Joshua Cooper¹, Billy Molloy², Huahua Jian¹, Lisa Calto Don Cooper²

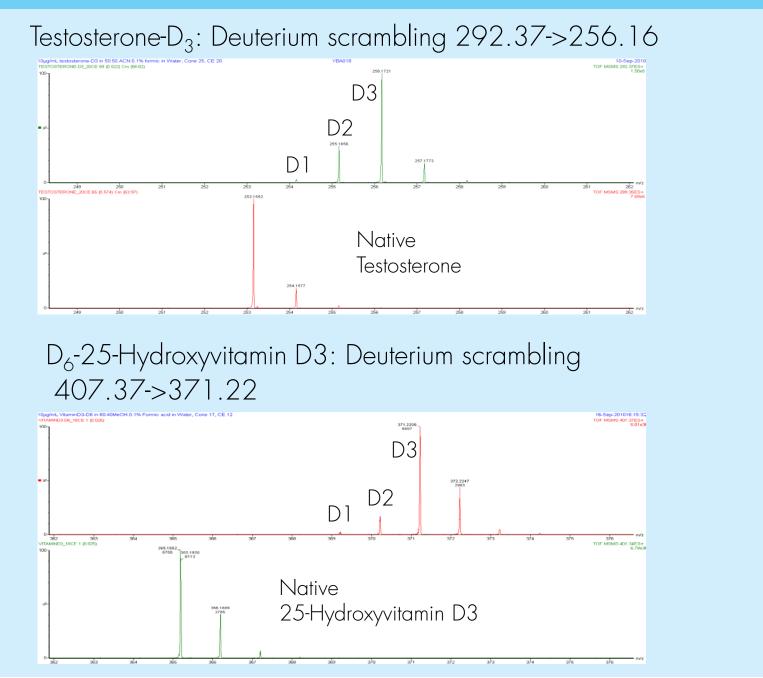
¹ Cerilliant Corporation, 811 Paloma Drive, Suite A, Round Rock, TX 78 ² Waters Corporation, Atlas Park, Simonsway, Manchester, M22 5 PP L

Introduction

Improvements in LC-MS/MS sensitivity and multiple reaction ma further adoption of LC-MS/MS technology in clinical settings. C is the potential for matrix effects that cause interferences or impo patient to patient it can be challenging to anticipate and detect

Stable isotope-labeled internal standards are frequently used to the accuracy of quantitation. A labeled internal standard that co patient specific matrix effects (co-eluting concomitant medication the analyte of interest.

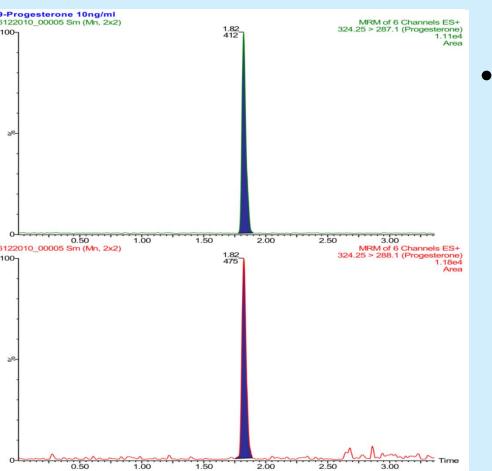
Complications in the use of deuterium-labeled internal standards in solution or in the ion source at the selected transitions. In this hormones and other compounds of clinical significance by LC-N reproducibility of the scrambling ratio and influences on scrambl quadrupole vs. quadrupole time-of-flight), concentration, solution internal standard.


Infusion Experiments of Clinically Significant Com

- Initial experiments were run to determine transitions and whether scrambling can occur at a selected transition.
- Instrument: Waters Xevo G2 QTof in ESI+ mode.
- Progesterone, Testosterone, Pregabalin, and Gabapentin (native and labeled) were infused at a concentration of 10 µg/mL in 50:50 ACN:0.1% formic acid in water at a flow rate of 20 µL/min.
- 25-Hydroxyvitamin D2 and D3 (native and labeled) were infused at a concentration of 10 µg/mL in 60:40 MeOH:0.1% formic acid in water at a flow rate of 20 μ L/min.
- Infusion and MS parameters were optimized for signal and collision energy to give a good fragmentation pattern for each pre-cursor ion.

lton ² , <u>Derrell Johnson</u> ¹ , Isil Dilek ¹ , Uma Sreenivasan ¹ ,	Deuterium Scrambling in Clinically Significant Hormones from Multiple R	eaction Monitoring (MRM) Experimen	ts at High and Low Concentr
78665 ° UK 1	 Experiments were conducted on a Waters Xevo TQ MS tandem quadrupole instrument using ESI+ mode. A Gradient system was used to elute the analytes from an ACQUITY BEH C18 2.1 x 50 mm column using water and methanol each containing 0.1% formic acid. 	Hormones Label Major Transitions D_n-1/D_n D_n-1/D_n Progesterone 315.25-> 96.9 0.1 315.25->108.9 0.1 315.25->279.1 0.0	mbling %Scrambling %CollisionJ_1/D_nD_{n-2}/D_nEnergy0.0NA300.0NA30NA0.320NA0.020
monitoring (MRM) capabilities are resulting in s. One specific clinical challenge with LC-MS/MS mpact ionization efficiency. As samples vary from tect matrix effects.	Hormones (Native & Labeled)SolutionLow Concentration (ng/mL)High Concentration (ng/mL)Testosterone1:1 Methanol:Water0.520Progesterone, Cortisol1:1 Methanol:Water10500Estradiol1:1 Methanol:Water1500	324.25->112.9 1.9 324.25->288.1 40.4 324.25->306.1 16.1	0.6 NA 30 2.4 NA 30 NA <u>12.4</u> 20 NA 0.9 20 0.0 NA 25 0.2 NA 25
to compensate for matrix effects and to increase t co-elutes with the drug being monitored can offset tion, etc.) that may occur at the retention time of	 25-Hydroxyvitamin D2/D3 60:40 Methanol:Water 30 500 Solutions were injected and MS parameters were adjusted to give optimal signal and fragmentation for each analyte. 	*255.15->159.0 0 Estradiol D5 *260.15->135.0 1.6 *260.15->161.0 1.5	6.0NA258.8NA25
ards can arise from hydrogen-deuterium scrambling his study, we examined deuterium-labeled C-MS/MS at select transitions. We investigated mbling from different LC-MS systems (tandem	Scrambling % Scrambling % CollisionHormonesLabelMajor TransitionsD_n-1/D_nD_n+1/D_nD_n-2/D_nEnergyTestosterone289.25-> 96.90.10.0NA30289.25->108.90.10.0NA30289.25->253.10.0NA0.220	363.25->309.1 0.4 363.25->327.1 0.5 363.25->345.1 0.5 Cortisol D2 365.25->123.0 <u>48.3</u>	NA NA 25 NA 0.1 25 NA NA 25 NA 0.7 25
tion behavior, and deuterium placement in the oppounds Using QTof MS 2	289.25->271.1 0.0 NA 0.0 20 Testosterone D2 291.25-> 98.9 0.5 0.0 NA 30 291.25->110.9 0.6 0.1 NA 30 291.25->253.1 7.8 NA 0.3 20 291.25->271.1 1.4 NA 0.0 20	Cortisol D4 365.25->347.1 7.5 367.25->121.0 0.4 367.25->313.1 32.1 367.25->331.1 18.7	NA NA 25 NA 10.0 25 NA NA 25 NA NA 25
Compound Label Major Transitions Scrambling % Collision Testosterone D3 292.37>256.16 3.3 20 292.37>274.18 5 20 Progesterone D9 324.25>306.24 20 19 324.25>109.05 0 19 324.25>100.07 0 19 Progesterone D9 324.25>100.07 0 19 324.25>100.07 0 19 Pregabolin D6 166.13>148.09 0 25 166.13>13.009 25 166.13>13.009 25 166.13>18.09 25 166.13>89.07 40 25 Gabapentin D10 182.31>164.11 0 18 182.31>147.09 18 25 25Hydroxyvitamin D3 D6 407.37>389.23 2 12 12 12 25Hydroxyvitamin D2 D6 419.60>383.40 6 10 10 125 10 10 25 10 10 25 10 10 25 10 10<	$\frac{292,25>108,9}{292,25>254,1} \frac{24.4}{3.7} \text{ NA} \frac{30}{120}$ $\frac{292,25>254,1}{3.7} \frac{24.4}{3.7} \text{ NA} \frac{1.8}{0.1} \frac{20}{20}$ $\frac{292,25>224,1}{3.7} \frac{24.4}{3.7} \text{ NA} \frac{1.8}{0.1} \frac{20}{20}$ $\frac{292,25>254,1}{294,25>90,9} \frac{1.2}{2.6} \frac{0.4}{2.2} \text{ NA} \frac{30}{20}$ $\frac{294,25>258,1}{294,25>276,1} \frac{21.2}{9.7} \text{ NA} \frac{2.7}{20}$ $\frac{294,25>276,1}{294,25>276,1} \frac{9.7}{9.7} \text{ NA} \frac{0.3}{20}$ $\frac{1}{1000} \text{ Underlined numbers denote scrambling above 5.0\%}$ $\frac{A \text{ Representative Example of Deuterium Scrambling on Tandom Quad M}}{Progesterone and the D9 analog were analyzed by multiple reaction moder and fragment product ions using a Waters Xevo TQ MS}$ $\frac{1}{1000} \frac{1000}{1000} 10$	Deuterium placement in the intervalues for different deuterium of S: Progesterone-D ₉ (324->287) 5 onitoring (MRM) for water loss	 tion dependant. The scrambling ratio ernal standard can influence level of inalogs of cortisol and 25-hydroxyvit Solution Behavior of Deuteri Some deuterium-labeled interna chemically exchangeable positi An NMR experiment was condu- deuterium was due to exchange LC-MS/MS. Testosterone-D₃ (16,16,17-D₃), Progesterone-D₉ (2,2,4,6,6,17 methanol-D₄ with 0.1% formic co- exchange and were then assess
e selected to minimize or eliminate deuterium opropriate Transition 3		Time	 D₉ was expected to show exchange After 14 days at room temperated to show exchange
Testosterone-D ₃ : Scrambling mitigated 292.37->274.18	Progesterone native: Transition 315.25->279.1 No scrambling observed at transition 315.25->278.1 Deuterium scrambling in Progesterone-D ₉ can be mitigated by monitoring alterno	ansition 324.25->288.1 at transition 324.25->287.1	 No exchange was observed in temperature in the absence of C Exchange in solution would not diluent or LC-MS/MS analysis of the second seco
D ₆ -25-Hydroxyvitamin D3: Scrambling mitigated	CONCLUSIONS		
	• Scrambling was observed on both tandem quad and QTof MS at select transitions for the d		purce and diluent selection represent pa
407.37->389.23 Pagere. Viewr0256 in 60 40%-CH0 1% Forms and in Viewr, Gree 17, CE 12 The Marked of 2010 D_2 D_2 D_3 D_4 D_2 D_4 D_2 D_3 D_4	 Scrambling can be mitigated by selection of an appropriate transition with the exception of Awareness of potential scrambling is important for proper internal standard design and sele accurate quantitation and reproducible results for critical decision-making in patient care. 	2	by altering instrument conditions and t

With initial monitoring & evaluation, transitions can be scrambling in the internal standard.


Mitigation of Scrambling by Selection of an App

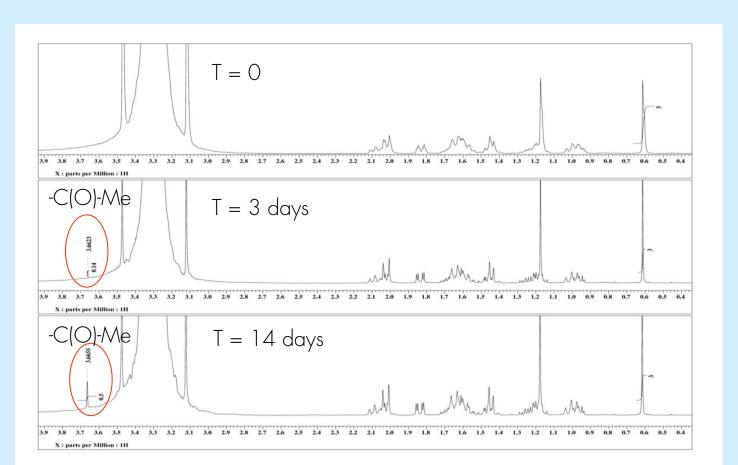
Vaters THE SCIENCE OF WHAT'S POSSIBLE."

TAMIND3-D6_18CE 1	(0.025)	s Formic acid in Wate	R, Cone 17, CE 12						
°°1								389.2272 22092	
								D3	
28-									
0							D2		390.2310 8142
381 ITAMIND3_18CE 1 (0.0	382 125)	383	384	385	385	387	366	389	390
200 200 200		262.1010	384 1971 9076	Nat 25-1	tive Hydro	oxyvit	amin	D3	
301	ala	ala	384	366	366	367	sie	sio	390

- nducted to understand whether the loss of nge in solution or scrambling within the
- Estradiol-D₅ (2,4,16,16,17-D₅), and 17α , 21, 21, 21-D₉) were placed in c acid to accelerate any potential essed by ¹H NMR. Only Progesteronechange.
- erature, only Progesterone-D₉ showed e harsh acidic conditions.
- in Progesterone-D₉ after 10 days at room of 0.1% formic acid.
- not be expected to occur under normal is conditions.

ntrations in Solution

nal MRM ection for um-labeled al Standards be achieved cases excep ortisol- D_2


			Sarampling %	Saramhling %	Sorambling %	Collision
Hormones	Label	Major Transitions	D_{n-1}/D_n	Scrambling % D _{n+1} /D _n	Scrambling % D _{n-2} /D _n	Collision Energy
25-Hydroxyvitamin D2	LUDEI	413.35->337.25	0.0	NA	NA	15
		413.35->355.25	0.0	NA	NA	15
		413.35->377.25	0.0	NA	NA	15
		413.35->395.25	0.0	NA	NA	15
		413.3J->39J.ZJ	0.0	INA	INA	15
25 Hudrova witamin D2	D3	416.35->340.25	10.1	NA	NA	15
25-Hydroxyvitamin D2	D3	416.35->358.25	<u>10.1</u> 0.4		NA	
					NA	15 15
		416.35->380.25	<u>15.0</u> 17			
		416.35->399.25	1./	NA	NA	15
		410 25, 227 05	\cap 1	NIA	NIA	1 5
25-Hydroxyvitamin D2	D6	419.35->337.25	0.4			15
		419.35->355.25	0.2			15
		419.35->383.25	7.6	NA	NA	15
		419.35->401.25	1.6	NA	NA	15
			0.0	N 1 A	N 1 A	0.0
25-Hydroxyvitamin D3		401.35->159.0	0.2	NA	NA	30
		401.35->107.0	0.1	NA	NA	30
		401.35->365.25	0.1	NA	NA	10
		401.35->383.25	0.0	NA	NA	10
25-Hydroxyvitamin D3	D3	404.35->162.0	<u>42.6</u>	NA	NA	30
		404.35->110.0	<u>52.4</u>	NA	NA	30
		404.35->368.25	<u>11.6</u>	NA	NA	10
		404.35->386.25	1.0	NA	NA	10
25-Hydroxyvitamin D3	D6	407.35->159.0	0.7	NA	NA	30
		407.35->107.0	1.3	NA	NA	30
		407.35->371.25	<u>20.2</u>	NA	NA	10
		407.35->389.25	4.3	NA	NA	10

Underlined numbers denote scrambling above 5.0%.

- os were reproducible and consistent from high to low concentration.
- scrambling as demonstrated by the change in scrambling percent amin D2/D3.

erium-Labeled Hormones by ¹H NMR

nal standards contain deuterium at sitions (example: Progesterone- D_9).

Progesterone-D₉ in the presence of 0.1% formic acid/methanol- D_4 over 2 weeks

- d transition selection. This approach is important in clinical method development to ensure
- arbon-13 or nitrogen-15-labeled analogs with benefits such as ready availability and lower cost

©2011 Cerilliant Corporation | 811 Paloma Drive | Round Rock, Tx 78665