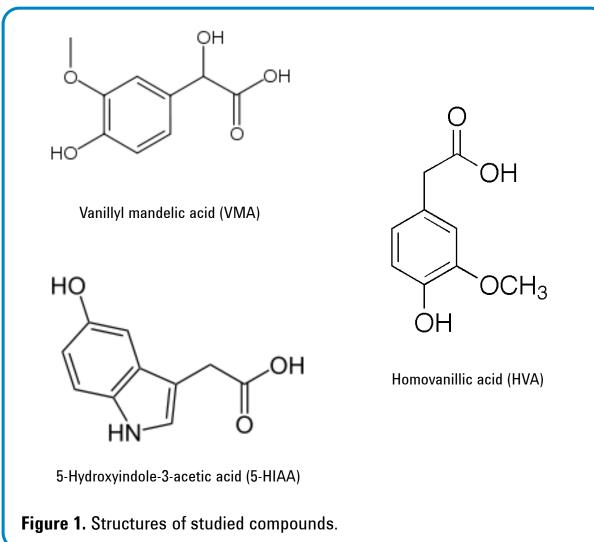
Determination of urinary vanillylmandelic acid, homovanillic acid and

5-hydroxyindoleacetic acid by LC-MS/MS for clinical research


Linda Côté¹, Rory Doyle², Kevin McCann³, ¹Agilent Technologies, Inc., Montréal, QC, ²Agilent Technologies, Inc., Wilmington, DE, ³Agilent Technologies, Inc., Santa Clara, CA

AACC 2013 Poster #A199

Introduction

Liquid chromatography triple quadrupole mass spectrometry (LC-MS/MS) is ideally suited for the rapid analysis of multiple analytes. A highly sensitive and specific LC/MS/MS method has been developed for the quantitation of vanillylmandelic acid (VMA), homovanillic acid (HVA) and 5-hydroxyindoleacetic acid (5-HIAA) in urine. The level of creatinine in urine can also be quantified at the same time.

A simple sample preparation involving only a dilution is used for the simultaneous determination of VMA, HVA and 5-HIAA in urine. Calibrators were created by spiking clean urine with various concentrations of each analyte. The chromatographic system consists of a pentafluorophenyl (PFP) column and a mobile phase comprised of methanol and water containing 0.2% formic acid. Quantifier and qualifier MRM transitions were monitored and deuterated internal standards were included for each analyte to ensure accurate and reproducible quantitation.

Experimental

Experimental

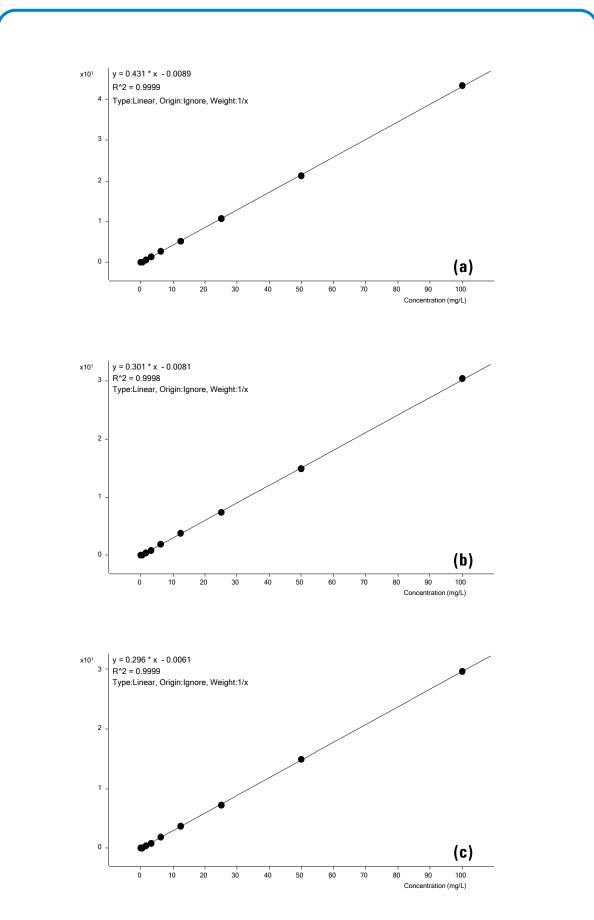
MS Method

Agilent 6460 QQQ with JetStream technology

lon mode:	AJS ESI(-) 325 °C
Gas temperature: Drying gas (nitrogen):	10 L/min
Nebulizer gas (nitrogen):	50 psi
Sheath gas (nitrogen):	300 °C
Sheath flow:	11 L/min
Capillary voltage:	3500V
Nozzle voltage:	1500V
Q1/Q3 Resolution:	0.7 unit
Dwell time:	20 msec
Delta EMV:	200V

Source conditions and MRM transitions (table 2) were determined and optimized automatically using Agilent Optimizer software.

Compound	Prec Ion	Prod Ion	Frag (V)	CE (V)	CAV (V)
HVA*	181.1	137	70	4	2
HVA	181.1	122	70	16	2
HVA-D5	186.1	142.1	70	4	2
VMA*	197	137	100	24	2
VMA	197	138	100	10	2
VMA-D3	200.1	140	100	24	2
5-HIAA*	190.1	146.1	70	6	2
5-HIAA	190.1	144	70	24	2
5-HIAA-D5	195.1	151.1	70	8	2
Table 2: MRM Transitions table (*Quantifier)					


Results and Discussion

Chromatographic separation of all analytes (figure 2) is achieved in less than four minutes through the use of a pentafluorophenyl (PFP) column. The separation of interferences present in urine from HVA and 5-HIAA are especially critical. Without proper separation by retention time, these compounds can cause interferences leading to inaccurate quantitation.

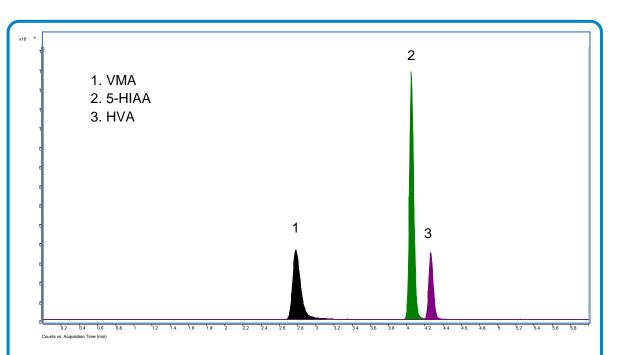
Results and Discussion

	Level 1				Level 2	
Compound	Range (HPLC)	Measured	CV (%)	Range (HPLC)	Measured	CV (%)
VMA	2.1-3.1	2.5	2.3	11.2-16.8	14.6	2.4
5-HIAA	2.2-3.4	2.8	2.0	20.8-31.2	27.6	2.8
HVA	1.0-1.4	1.3	5.8	13.0-19.6	15.8	3.9

Table 4. Results in mg/L (n=5) of BioRad QC run by LC/MS/MS (range determined by BioRad using HPLC)

Sample Preparation

Calibrators (Cerilliant) are prepared with clean urine matrix (Golden West Biologicals). Isotopically labelled Internal standards (Cerilliant) and BioRad Lyphocheck human urine controls were used. Calibrators, controls and urine samples are diluted 1 in 10 with 0.2% formic acid in water containing internal standards.


LC Method

Agilent 1290 HPLC binary pump, well plate sampler with thermostat, temperaturecontrolled column compartment

Parameter	Value			
Analytical Column	Agilent Pursuit 3 PFP, 2x150mm, 3µm PN: A3051150X020			
Guard Column	Agilent Meta Guard column Pursuit 3 PFP, 2 mm PN: A3051MG2			
Column Temp	40°C			
Injection Volume	20 µl			
Autosampler Temp	4°C			
Needle Wash	Flush port for 10 seconds			
Mobile Phase A	0.2% Formic Acid in Water			
Mobile Phase B	Methanol			
Flow Rate	0.3 ml/min			
1290 Pump Gradient	<u>Time (min.) %B</u>			
	0.0150.5152.5603.0956.095			
Stop Time	6 min.			
Post Time	3 min.			
Table 1. LC Parameters				

Absolute ion suppression and matrix effect were observed but were compensated for by the internal standards (table 3).

Commercially available quality controls (QC) material (BioRad) were used to measure the accuracy and precision of this method. Results (table 4) show agreement with expected values and excellent precision at both levels.

Figure 2. Chromatography for VMA. 5-HIAA and HVA

Compound	Matrix effects % (n = 10)		Accuracies % With ISTDs corrections (n = 10)			
	Average	SD	Range	Average	SD	
VMA	91.5	6.4	95.6-108.3	100.0	3.9	
5-HIAA	93.2	3.3	94.6-115.2	100.0	5.8	
HVA	91.3	1.5	92.9-103.9	100.0	3.1	

Table 3. Ion suppression and matrix effects

Figure 3. Calibration curves for (a) VMA, (b) 5-HIAA and (c) HVA

Compound	R²	Concentration (mg/L)	Concentration (µmol/L)	Accuracy (%) n = 3	Intraday CV (%) n = 3	Interday CV (%) n = 5
VMA	0.9999	0.078	0.39	106.8	3.9	3.9
		12.5	63.1	100.1	1.3	1.7
		100	504.6	100.5	0.6	0.5
5-HIAA	0.9998	0.078	0.41	109.7	3.4	3.4
		12.5	65.4	99.1	2.2	1.7
		100	523.1	100.8	0.1	0.1
HVA	0.9999	0.078	0.43	102.2	4.2	3.2
		12.5	68.6	99.9	1.7	1.3
		100	548.9	100.5	0.4	0.3

 Table 5: Summary of analyte performance for VMA, 5-HIAA and HVA.

Conclusions

A robust method for quantifying vanillylmandelic acid (VMA), homovanillic acid (HVA) and 5-hydroxyindoleacetic acid (5-HIAA) in urine with excellent reproducibility and accuracy has been developed.

Agilent LC/MS products are for research use only and not to be used for diagnostic procedures