

Analysis of 1,25-dihydroxyvitamin D by Immunoextraction and LC-MS/MS

How you want to be treated.

INTRODUCTION

 1α ,25-Dihydroxyvitamin D (1α ,25(OH)₂D), the biologically active form of Vitamin D, is responsible for calcium and phosphorous homeostasis through its actions on the GI tract, kidney and bone. Routine measurement of 1α ,25(OH)₂D is of greatest clinical importance in the investigation of PTHindependent hypercalcemia¹ which is sometimes caused by over-expression of CYP27B1 (1 α -hydroxylase) in granulomatous and lymphoid tissue. In addition to the wellknown endocrine functions, there is an increasing body of literature elucidating the paracrine and autocrine actions of 1α ,25(OH)₂D and interest in quantifying this compound is growing accordingly.

Liquid chromatography-tandem mass spectrometry (LC-MS/MS) is considered the 'gold standard' for clinical steroid measurement offering advantages over traditional clinical immunoassay in both specificity and cost². However, analysis of steroids by LC-MS/MS is not always straightforward. In the case of 1α ,25(OH)₂D, low circulating concentration, interferences from more abundant vitamin D metabolites, and low ionization efficiency hamper analysis.

We have developed an LC-MS/MS assay for analysis of 1α ,25(OH)₂D employing delipidation, immunoextraction with Immunodiagnostic Systems (IDS) bulk anti- 1α ,25(OH)₂D elution with ethanol, followed by coated beads, derivatization with PTAD.

MATERIALS

• MATERIALS

- 1α ,25(OH)₂VD3 and 1α ,25(OH)₂VD2 (Cerilliant)
- 1α ,25(OH)₂VD3-d₆ (Toronto Research Chemicals) and 1α ,25(OH)₂VD2-d₆ (Medical Isotopes) internal standards MS Gold VitaminD free human serum (Golden West)
- Biologicals) • PTAD (Sigma Aldrich), 0.5mg/mL in Acetonitrile (Sigma Aldrich)
- Dextran Sulfate and Magnesium Chloride (Sigma Aldrich)
- Ethanol (J.T. Baker)

• CALIBRATORS

 Addition of 2 standard solution levels into MS Gold serum

Table 1: Calibrator levels

	1α ,25(OH) ₂ VD3 and 1α ,25(OH) ₂ VD2					
Solution Concentration Level (pg/mL)		Amount of solution added (μL)	Volume Serum	Final Concentration in serum (pg/mL)		
Blank			1 mL			
Standard 1	500	5		2.5		
Standard 2	500	10		5		
Standard 3	500	20		10		
Standard 4	5000	5		25		
Standard 5	5000	10		50		
Standard 6	5000	20		100		
Standard 7	5000	40	Ψ	200		

J Grace van der Gugten and Daniel T Holmes St. Paul's Hospital, University of British Columbia, Vancouver, Canada

METHODS

IMMUNOEXTRACTION

- 750uL of serum sample is mixed with 25uL of 8 ng/mL internal standards and allowed to equilibrate for 30 minutes at room temperature
- Serum is delipidated by adding 75uL of 5g/L Dextran Sulfate + 0.5M MgCl₂, vortex mixing, followed by centrifugation.
- 500uL of delipidated serum is added to a 96 well plate containing 400uL of IDS anti-1,25(OH)₂VD coated bead slurry.
- The plate is sealed and rotated end over end at room temperature for 90 minutes.
- The beads are transferred to a filter plate, and washed 6 x with 1mL aliquots of DI water, followed by elution of the 1α ,25(OH)₂VD3 and 1α ,25(OH)₂VD2 with 2 aliquots of ethanol.
- Eluants are evaporated to dryness at 70°C.

DERIVATIZATION

- 50uL of 0.5 mg/mL PTAD in ACN is added to each sample, and left at RT for 1 hour for reaction to complete
- 50uL DI water is added to quench excess PTAD, and vortex mixed.
- LC PARAMETERS
- Shimadzu 20LC HPLC
- Phenomenex Luna C8 50x2mm 3µ column, maintained at 45°C, with 4x2mm C8 guard column
- MPA: 0.1% FA in Water
- MPB: 0.1% FA in Acetonitrile

Table 2: Gradient parameters

Time	Flow		
(min)	(µL/min)	%MPA	%MPB
0	500	65	35
0.1	1	65	35
4		5	95
5		5	95
5.1		65	35
6.5	\mathbf{V}	65	35

• MS/MS PARAMETERS

• AB Sciex API5000 triple quadrupole mass spectrometer (electrospray ionization in positive mode)

Table 3: MRM s for analytes and IS					
Q1 Mass	Q3 Mass				
(Da)	(Da)				
574.5	314.3				
580.5	314.3				
586.6	314.3				
592.6	314.3				
	Q1 Mass (Da) 574.5 580.5 586.6				

EXPERIMENTAL

PRECISION

Pooled patient samples at LOQ, low, medium and high concentrations were analyzed for within-run, between-run, and total imprecision using modified Clinical Laboratory Standards Institute (CLSI) EP-5A document (quintuplicate analysis over four days).

Limit of Detection (LOD) and Limit of Quantitation (LOQ) were estimated based on signal-to-noise calculations for low pooled samples.

 1α ,25(OH)₂VD3 and 1α ,25(OH)₂VD2 were spiked into a patient pool at levels of 10, 20, 50, 100 and 150 pg/mL. Observed recovery was compared with expected recovery. • INTERFERENCE TESTING

High normal levels of 25-hydroxyvitamin D metabolites and 24,25-dihydroxyvitamin D metabolites were spiked into Mass Spec Gold Serum and pooled serum, and extracted as per the procedure.

Comparison was done with a commercial DiaSorin RIA assay (ARUP Laboratories) with 48 patient samples.

Figure 2: Representative chromatograms for (A) low level calibrator and (B) low level pooled patient sample.

Table 4: Method imprecision using pooled patient samples, n=2-, except Medium n=19 (1 outlier removed) and High n=18 (2 outliers removed)

EXPERIMENTAL CONT'D

LOQ and LOD

• **RECOVERY**

• METHOD COMPARISON

RESULTS

Figure 1: Calibration curves for (A) 1α ,25(OH)₂VD3 from 2.5-200 pg/mL and (B) 1α ,25(OH)₂VD2 from 5-200 pg/mL. Regression for both analytes is linear, 1/x.

PRECISION

	1α,25(OH) ₂ VD3				1α,25(OH)₂VD2			
	Nominal				Nominal			
cision Pool	conc				conc			
Level	(pg/mL)	WRCV (%)	BRCV (%)	TCV (%)	(pg/mL)	WRCV (%)	BRCV (%)	TCV (%)
	3.8	8.0	1.6	8.2				
	7.1	7.2	3.3	7.9	6.5	10.2	9.8	14.1
ium	33.8	8.4	7.8	11.5	16	7.5	3.1	8.1
	84.0	5.1	4.8	7.0	54.1	6.9	3.9	7.9

LOQ and LOD

Estimated LOQ based on S/N of 10:1 is 2.5pg/mL for 1α ,25(OH)₂VD3 and 5 pg/mL for 1α ,25(OH)₂VD3. Estimated LOD based on S/N of 3:1 is <2.5 pg/mL for 1α ,25(OH)₂VD3 and <5 pg/mL for 1α ,25(OH)₂VD3.

• RECOVERY

r²=0.8721.

A number of other methods of 1α ,25(OH)₂D analysis have been developed. Approaches are generally labour intensive and sample preparations have involved a combination of: protein precipitation, immunopurification, derivatization, and Li⁺ adduct formation^{3,4,5}. The present method is no exception to this but affords quantitation down to 2.5 pg/mL for 1α ,25(OH)₂VD3 and 5 pg/mL 1α ,25(OH)₂VD2 with total precision of 7.0-11.5% for 1α ,25(OH)₂VD3 and 8.1-14% for 1α ,25(OH)₂VD2 concentrations typical of patient care settings. The method differs from previously published approaches as it uses delipidation instead of generic protein crash and, like the method of Strathmann *et al*, has the benefit of employing the IDS immunopurification gel which is the less expensive of the two available commercial immunopurification products (IDS gel and the ImmunoDiagnostik Immunotube[®]). Investigation of suitability for routine clinical use is ongoing.

(2010): 81.

AKNOWLEDGEMENTS: We would like to thank Dr. Alan Rockwood and Julie Ray from ARUP Laboratories for the kind provision of comparison samples.

RESULTS CONT'D

Table 5: Recovery results for patient pool spiked with 10, 20, 50, 100 and 150 pg/mL of 1α ,25(OH)₂VD3 and 1α ,25(OH)₂VD2 .

			—			
	Observed	Expected		Observed	Expected	
	1,25(OH)₂VD3	1,25(OH) ₂ VD3	1,25(OH) ₂ VD3	1,25(OH) ₂ VD2	1,25(OH) ₂ VD2	1,25(OH) ₂ VD2
	pg/mL	pg/mL	Recovery (%)	pg/mL	pg/mL	Recovery (%)
ool	27.2			6.12		
ool + 10pg	33.9	37.2	91.1%	14.9	16.12	92.4%
ool + 20pg	46.1	47.2	97.7%	25.1	26.12	96.1%
ool + 50pg	83.9	77.2	108.7%	64.7	56.12	115.3%
ool + 100pg	118.0	127.2	92.8%	91.5	106.12	86.2%
ool + 150pg	174.0	177.2	98.2%	149.0	156.12	95.4%

Figure 3: Overlaid chromatogram showing PTAD-derivatized MRMs for 1α ,25(OH)₂VD, 24,25(OH) ₂VD and 25(OH)VD metabolites in a pooled sample spiked with 10ng/mL 24,25(OH)₂VD and 100ng/mL 25(OH)VD metabolites. Calculated concentration of the 1α ,25(OH)₂VD3 and 1α ,25(OH)₂VD2 is the same for the pooled sample with and without fortification of metabolites .

Figure 4: Method Comparison between SPH LC-MS/MS method and ARUP RIA method. Passing-Bablok regression -7.83+0.77x;

DISCUSSION

REFERENCES

1. Hollis B., Assessment and Interpretation of Circulating 25-Hydroxyvitamin D and 1,25-Dihydroxyvitamin D in the Clinical Environment Endocrinol Metab Clin North Am 2010; 39:2

2. Carvalho VM, The coming age of liquid chromatography coupled to tandem mass spectrometry in the endocrinology laboratory. J Chromatogr B 2012:883-884

3. Yuan, Chao, et al. "Sensitive measurement of serum 1α , 25 dihydroxyvitamin D by liquid chromatography/tandem mass spectrometry after removing interference with immunoaffinity extraction." Rapid Communications in Mass Spectrometry 25.9 (2011): 1241-1249. 4. Casetta, Bruno, et al. "Development of a method for the quantification of 1alpha, 25 (OH) 2-vitamin D3 in serum by liquid chromatography tandem mass spectrometry without derivatization." *European journal of mass spectrometry (Chichester, England)* 16.1

5. Strathmann, Frederick G., Thomas J. Laha, and Andrew N. Hoofnagle. "Quantification of 1α, 25-Dihydroxy Vitamin D by Immunoextraction and Liquid Chromatography–Tandem Mass Spectrometry." *Clinical chemistry* 57.9 (2011): 1279-1285.