What Makes a Good Reference Standard?

Mitzi Rettinger, Uma Sreenivasan, PhD, Isil Dilek, PhD, Sherri Pogue

© 0010 0 IIII · 0

Abstract

To ensure accuracy of results in the analytical laboratory analytical chemists must rely on the accuracy, stability, and consistency of reference materials or spiking solutions.

There are several factors critical to production of a high quality reference standard or spiking solution including raw material handling, characterization and potency; certification and qualification of solutions; and homogeneity and stability of the solution. Certified Analytical Reference Standard Solutions prepared in a diluent that promotes stability and packaged under argon in flame sealed ampoules can be stable for many years. This allows the laboratory the convenience of fewer lot changes and more consistent data over time.

This presentation walks through the parameters important to the manufacture, analysis, uncertainty and storage of certified reference standards. Results are only as good as the reference.

Results are only as accurate as the reference!

- Accuracy and reliability of analytical results is dependent on accuracy and reliability of the method of analysis, accuracy in the preparation of samples, and accuracy of the calibrators used.
- Highly pure, well-characterized, reference standards are critical to the accuracy of the analysis
- Design, preparation, packaging, and storage of reference standards affect the traceability, accuracy of concentration, stability, and uncertainty

What makes a Good Reference Standard? One Suitable for Quantitative Applications?

- High purity thoroughly & accurately characterized components neat material characterization
- Prepared using accurate, calibrated, and qualified balances (pipettes & glassware when needed)
- ✓ Accurate weighing operation
- ✓ Accurate solvent addition
- ✓ Traceability of all components
- ✓ High purity diluents and/or stabilizers, compatible with the compound(s)
- ✓ Analyzed to verify accuracy & consistency
- ✓ Appropriate packaging and storage
- ✓ Assessment of shelf life

Neat Material Characterization

Complete & accurate characterization of neat material is essential to accuracy of the solution

Characterization Considerations

- Are vendor certified values complete, accurate and reliable?
- Reliability/repeatability of method?
- Is there an adjustment for salt form?
- Does the vendor provide uncertainty on the purity factor (potency)?

Characterization of neat materials should include

- Purity and impurities
- Residuals
- Verification of identity

Reference Standard Design & Preparation

Glycosides-hygroscopic

Opiates-hydrates

Many organic materials residual solvents (benzodiazepines)

5

Neat Materials - Certification

•

Identity

- Multiple techniques
 - 1D and 2D NMR
 - Proton
 - Carbon-13
 - Other nuclei
 - FTIR
 - GCMS, LCMS, LCMSMS
 - Other techniques as needed: EA, Optical Rotation, DSC, Melting Point, TGA
- Comparison to literature
 references

Purity / Potency

- Mass Balance Orthogonal approach
 - Multiple techniques for chrom purity and residuals
 - Based on ISO Guide 34
 - Used by NIST
 - Appropriate mass balance equation critical
 - Assays when appropriate
 - Availability of established methods with high precision
 - Availability of primary reference materials

6

Purity and Impurities

Chromatographic Purity

- Purity and related substances
- Method development
 - Literature methods
 - Existing methods for similar compounds
 - Base line separation
 - Resolution of known impurities
- Use at least 2 techniques and different columns
 - values must agree within 0.5% of each other

Residual Impurities

- Residual water
 - USP <921>; system suitability
- Residual solvent by GC Headspace –
 - Cerilliant validated method or USP <467>
- Residual inorganic content
 - Micro ROI method based on USP
 <281> less material with
 comparable results
- NMR evaluation
- EA or other techniques

Assignment of Purity Factor

Mass Balance Equation

- Incorporates chromatographic purity and related substances
- Assigned on an "as-is" basis adjustments for salts made when preparing solution
- Equation may be modified to address impurities from orthogonal chromatographic techniques, chiral purity, etc.

$$PurityFactor = \left[[100 - (wt\% Solvents) - (wt\% H_2 O) - (wt\% Inorganics)] * \frac{ChromPurity}{100} \right]$$

*wt%Solvents: the weight percentage of residual solvents present in the neat material wt%H*₂O: the weight percentage of water present in the neat material *wt%Inorganics: the weight percentage of inorganic content in the neat material ChromPurity: based on the chromatographic purity of the specified primary purity method, either GC or HPLC*

Complete Characterization Critical

Use of chromatographic purity alone can introduce significant error into the concentration of the reference solution

Compound	Chrom. Purity (%)	Residual Solvent Content (%)	Trace Inorganic Content (%)	Residual Water Content (%)	Purity Factor for Quantitative Use (%)
Ranitidine HCI	99.5	0.87	0.13	None Detected	98.47
Cyanidin-3- glucoside	94.7	ND	< 0.1	6.29	88.71
Cyanidin-3- galactoside	94.7	ND	< 0.1	4.83	90.08
Oxazepam Glucuronide	99.9	ND	2.37	8.96	88.58
Morphine	99.8	ND	< 0.1	3.36	96.45
Morphine-3-B- D-glucuronide 1/2007	99.6	1.38	< 0.1	3.11	95.1
Morphine-3-B- D-glucuronide 4/2009	99.6	1.38	< 0.1	7.23	91

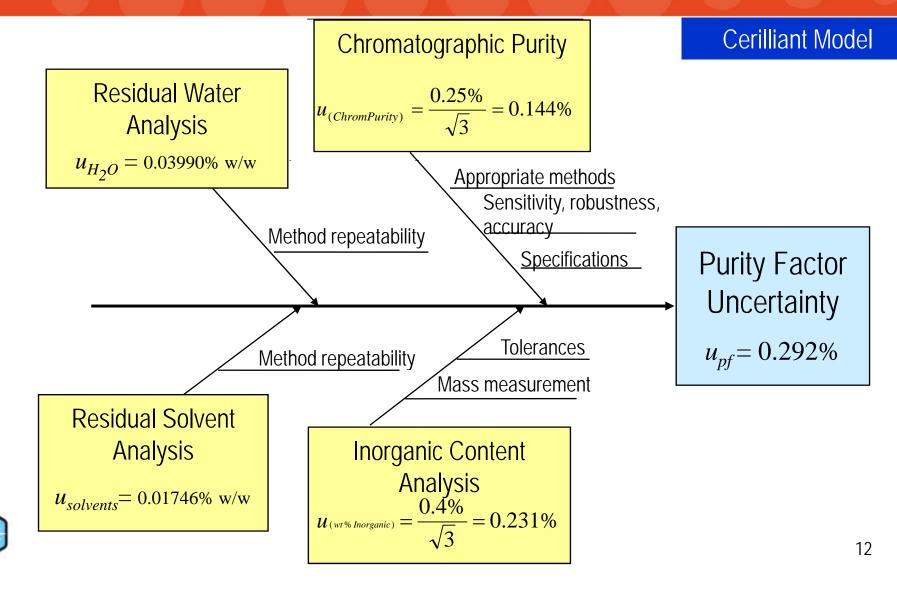
9

Impact of Hygroscopicity

Compound	First Analysis Date	Second Analysis Date	First Analysis Water (%)	Second Analysis Water (%)	Months Stored Between Analyses	Change in Water Content
Morphine	10/2007	5/2009	0.66	3.36	19	409%
Vardenafil di HCI	10/2008	1/2010	0.42	5.64	15	1243%
Digoxin (e.g. of Sample Handling)	6/2/2006 Bench top	6/4/2009 Glove box	1.15%	0.56%	NA	-51%

Changes in residual water content over time during storage and handling can impact accuracy of the reference solution concentration and analytical variability

Is it practical to check moisture content before each use of a neat reference material in an analytical lab?


Materials were stored under normal freezer conditions in sealed, screw-cap amber vials. Water content was analyzed by Karl Fisher Coulometry based on USP method <921>.

Uncertainty of the Purity Factor

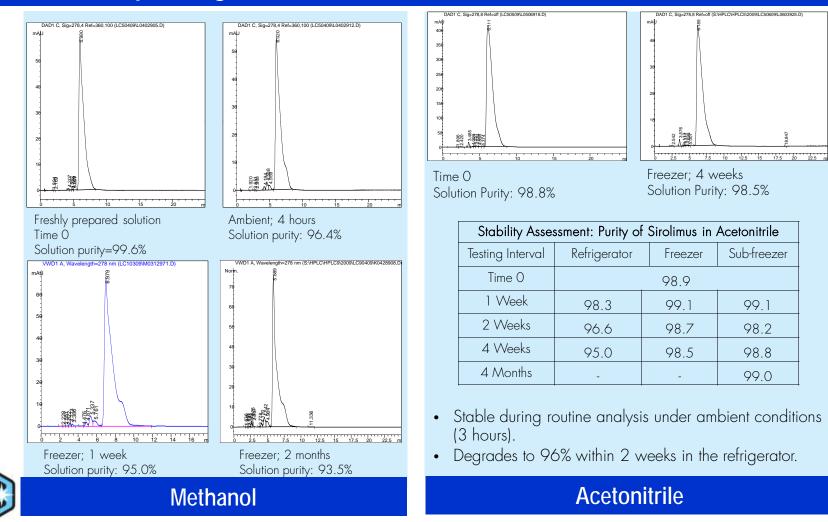
- Important to understand the uncertainty assigned to the purity factor
- Cerilliant approach
 - Followed ISO Guides 34, 35 and the Eurachem CITAC Guide in the development of uncertainty statements for the neat material purity factors
 - Combined uncertainty for the purity factor was calculated from the root sum square of the standard uncertainties of the individual components in a measurement equation
 - The process involved development of uncertainty budgets for each of the tests that contribute to the purity factor mass balance equation
- A similar approach would be required for assays and should include uncertainty of the primary reference standard certification, the standard curve preparation and the uncertainty of the analytical

Uncertainty of the Neat Material Purity Factor

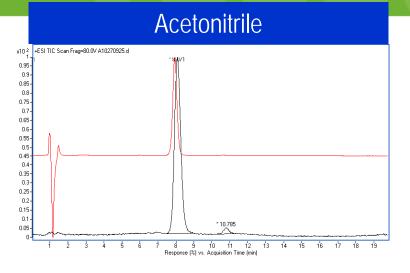
Diluent/Solvent Considerations

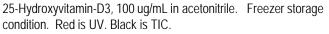
Solvent compatibility is critical to long term stability

- Solubility
 - Does the target compound dissolve at the required concentration?
 - Precipitation can occur over time or at reduced storage temperatures
- Compatibility with analysis
 - Solvent interferences in the chromatogram: UV cut-off; baseline effects
 - Non-polar solvents not ideal with reverse phase HPLC
 - Water not compatible with GC
- Solvent stability
 - THF/ethers form peroxides
 - Acetonitrile oxidizes & forms acetic acid
- Compound stability in the solvent
 - Protic solvents sirolimus (immunosuppressant) degrades in methanol over time but is stable in acetonitrile long term

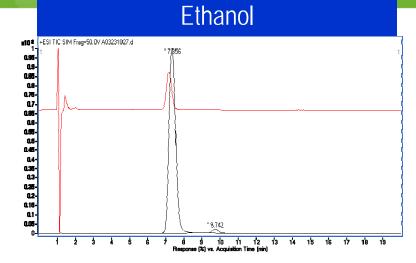


Purity, identity and traceability

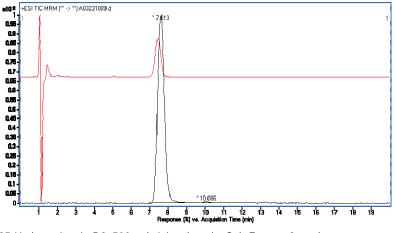

Reference Standard Design & Preparation


Solution Development – Diluent's Impact on Stability Example: Sirolimus

Rapid degradation in Methanol. Stable in Acetonitrile



Solution Development – Evaluation of Solvent & Storage Conditions Example: 25-Hydroxyvitamin-D3



HPLC and LCMS analysis of 25-Hydroxyvitamin-D3 in different solvents and storage conditions demonstrates improved performance of ethanol solution and at sub-freezer conditions

25-Hydroxyvitamin-D3, 500 ng/mL in ethanol. Freezer 2 weeks.

25-Hydroxyvitamin-D3, 500 ng/mL in ethanol. Sub-Freezer 2 weeks.

Manufacturing

Material / Equipment Needs

- Hygroscopicity
- Sensitivity to air or light
- Static potential
- Viscosity / volatility
- Room selection
- Environmental controls – glove box

Gravimetric Preparation

- Weight/Weight
- Higher precision
 vs. volumetric
- Balance selection
- Batch size flexibility vs. volumetric
- Traceability with weigh tapes
- Repeatability

Dispensing

- Equipment checks
- Line purge
- Tubing & syringes
- Sampling plans
- Segregation
- Evaporation control

Ê

Robust manufacturing practices critical to accuracy & consistency

Solution Preparation - Weighing Accuracy

Balance environment & weighing technique and can significantly influence reference accuracy

- Improper balance selection can lead to high level of uncertainty
 - Qualified balances calibrations traceable to NIST
 - Minimum weighings should be determined to achieve USP tolerances of NMT 0.1% relative error
 - 5, 6, & 7 place balances may be needed
 - Calibration verification procedures weekly & pre-use

Reference

Standard

Importance of Balance Selection and Mass Uncertainty					
Sample	Mass Uncertainty				
Mass	5-place Balance	4-place Balance			
1 mg	8.0%	45.0%			
10 mg	0.80%	4.5%			
100 mg	0.080%	0.45%			
1000 mg	0.0080%	0.045%			

Cerilliant Minimum Weighing Requirements					
Balance	7-place	6-place	5-place	4-place	
Balance Resolution	0.0001 mg	0.001 mg	0.01 mg	0.1 mg	
Minimum Weighing	1 mg	3 mg	20 mg	125 mg	

17

Solution Preparation - Weighing Accuracy

- Accuracy of weighing can be influenced by:
 - tongs vs. gloved hands
 - balance equilibration time
 - sample and solvent temperature
 - ambient temperature
 - vibrations
 - movement of air
- Hygroscopic materials handled in glove box
 - Inert atmosphere
 - Relative humidity < 5%
- Air currents, drafts around the balance, and additional vibrational forces on the pan can significantly affect balance repeatability.

Reference Standard

For Example:

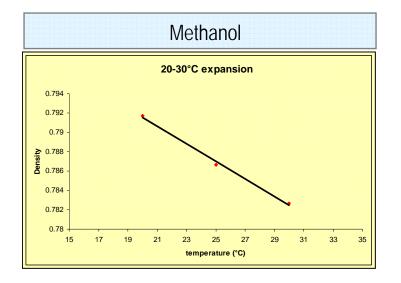
Cerilliant studies indicate that when gloved hands are used as opposed to tongs for handling sample vials, uncertainty of mass measurement increased approximately 10 fold.

Solution Preparation - Gravimetric Approach

Gravimetric addition of diluent is accurate and reproducible

Reference Standard Design & Preparation

Cerilliant's approach



- Target solvent weight calculated from target volume by adjusting for density. Actual solvent weight can be calculated back into volume to report concentration in mg/mL
- Ensures lot-to-lot consistency Measurement of volume by mass eliminates temperature dependence of flask accuracy and allows all solutions to be consistently prepared at the same chosen reference temperature.
- Eliminates subjectivity of the visual fill line in volumetric addition
- Mass measurements provide traceability to SI units of measure
- Weigh tapes provide an audit trail
- Allows accurate formulation of batch volumes well beyond the capacity of Class-A flasks
 19

Diluent Addition Gravimetric vs. Volumetric Methods

Thermal expansion will affect volumetric preparation of a solution but can be controlled by gravimetric addition of solvent

Source: Handbook of Thermophysical and Thermochemical Data, CRC Press

Method	Batch Size		
Meniod	10 mL	100 mL	1000 mL
Volumetric flask standard error			
Source: ASTM E288-03, Standard specification for laboratory glassware, 2003	0.20%	0.08%	0.03%
Analytical balance uncertainty			
Balance Type	5 Place	5 Place	1 Place
Typical values per Mettler Toledo	0.001%	0.0001%	0.009%
Values established by Cerilliant based on typical values by Mettler and Cerilliant weighing SOPs	0.0036%	0.00125%	0.009%

Bench preparation of sample and reference on different days may create variability due to density change

Dispensing & Packaging

Reference Standard Design & Preparation

- Solution standards dispensed into single use volumes and flame sealed under inert atmosphere
- Process controls
 - Line clearance, validated cleaning procedures and new tubing to prevent contamination
 - Batch homogeneity prior to dispensing (ensured with thorough mixing stirring or sonicating)
 - Consistency of volume dispensed verified throughout dispensing
 - Material specific controls employed as needed: continuous chilling, continuous stirring, nitrogen blanket over bulk material

- Flame sealed under inert atmosphere

Ampouled format sealed under argon protects from hygroscopicity, degradation, evaporation, & contamination -Promotes Stability

Analytical Verification & Certification

Reference Standard Design & Preparation

Accuracy

Comparison to a primary source or certified second source – curve/calibration standard Comparison of multiple independent preparations

> Purity Consistent with neat material No contamination or degradation

Homogeneity Across the batch of ampoules/vials

Consistency

Lot-to-lot consistency verified by comparing to the previous lot

Purity & Concentration are Analytically Verified

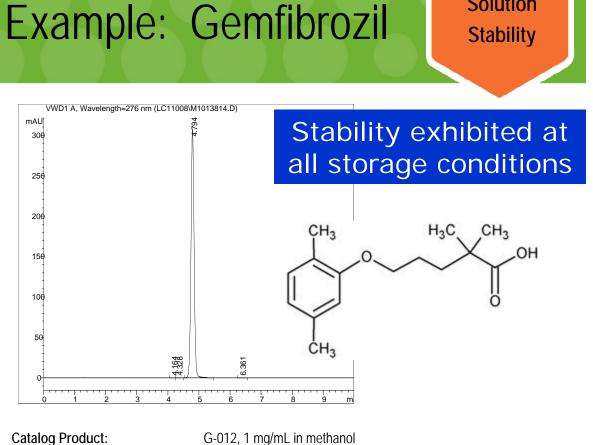
Assessment of Solution Stability

Solution Stability Enhanced stability from properly prepared ampouled solutions

- Expiration (shelf life) is established through realtime stability studies
- Solution purity and concentration are reevaluated at multiple intervals
- Solutions properly designed and prepared can be stable for years vs. weeks/months

Certified Solution Standards – Stability Examples

Flame sealed under argon – ampouled solutions can provide long-term stability. 5+ years for many


Purity Analyzed Concentration Age of Compound/Solvent Stability Sample Stability Stability Original Original Interval Interval Fentanyl/methanol (ug/mL) 5 years 99.1% 97.6 98.6 99.9% 6-Acetylmorphine/acetonitrile (ug/mL) 5.5 years 98.0% 99.5% 98.8 97.8 Nortriptyline HCI/methanol (mg/mL) 5 years 99.8% 99.9% 0.995 0.970 Codeine/methanol (mg/mL) 5.5 years 99.9% 99.4% 0.989 0.995 Haloperidol/methanol (mg/mL) 6 years 99.8% 0.988 0.970 99.8%

Concentration acceptance criteria for each of the examples = \pm 3% and incorporates variability of the analysis.

Solution

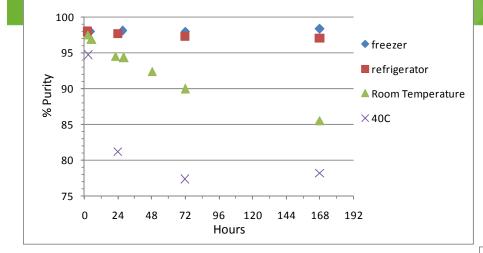
Stability

Storage Condition/ Test Interval	Gemfibrozil solution purity(%)			
Initial (t=0)	99.9			
Freezer (-1 to -25	°C)			
1 week	99.9			
2 weeks	99.9			
4 weeks	99.9			
Refrigerate (1 to 1	5°C)			
1 week	99.9			
2 weeks	99.9			
4 weeks	99.9			
Ambient (18 to 30°C)				
1 week	99.9			
2 weeks	99.9			
4 weeks	99.9			
Elevated (40°C)				
1 week	99.9			
2 weeks	99.9			
4 weeks	99.9			

Accelerated Stability

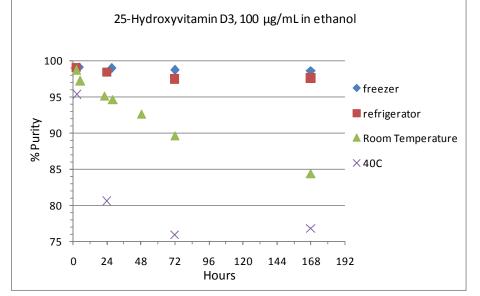
Analysis Method: Column: Mobile Phase: Flow Rate: Wavelength: Calibration Curve: Number of Points: Linearity (r):

G-012, 1 mg/mL in methanol HPLC/UV Betasil Phenyl 4.6 x 150 mm Acetonitrile::0.1% H₃PO₄ in Water 1.0 mL/min 276 nm Linear Regression 3


1.000

25

Solution


Stability of 25-Hydroxyvitamin D2 & D3

25-Hydroxyvitamin D2, 50 $\mu\text{g/mL}$ in ethanol

Accelerated stability

- Multiple temperatures
 - Freezer, refrigerate, and 40°C
- 2 hours to 7 days

Supports handling, shipping, and short & long term storage

Solution

Stability

Stability of Anthocyanins

Catalog Number	Name	Neat Material Purity	Solution Standard Purity time O	Solution Standard Purity 4 years
C-069	Cyanidin-3-glucoside	94.6	95.2	93.1
C-070	Cyanidin-3- galactoside	94.6	93.4	82.3
P-057	Petunidin-3-glucoside	91.9	91.1	92.1
P-058	Peonidin-3-galactoside	92.4	90.2	88.6

Column:	Prodigy ODS, 4.6 x 250 mm					
Mobile Phase:	A:	50% H ₂ O/48.5% CH ₃ CN/1% CH3COOH/0.5% H3PO4				
	B:	0.5% H ₃ PO ₄				
Gradient:	Time (mins)	%A	%В			
Program:	0	10	90			
	28	50	50			
	32	75	25			
	32.1	10	90			
Flow Rate:	0.9 mL/min					
Wavelength:	520 nm					

Concentration: 500 µg/mL, 2%HCI in Methanol	
Container: Amber glass ampoules under Argon	
Storage: Freezer	

Uncertainty of the Gravimetric Preparation

Certification includes assessment of uncertainty of the reference preparation in compliance with ISO 17025

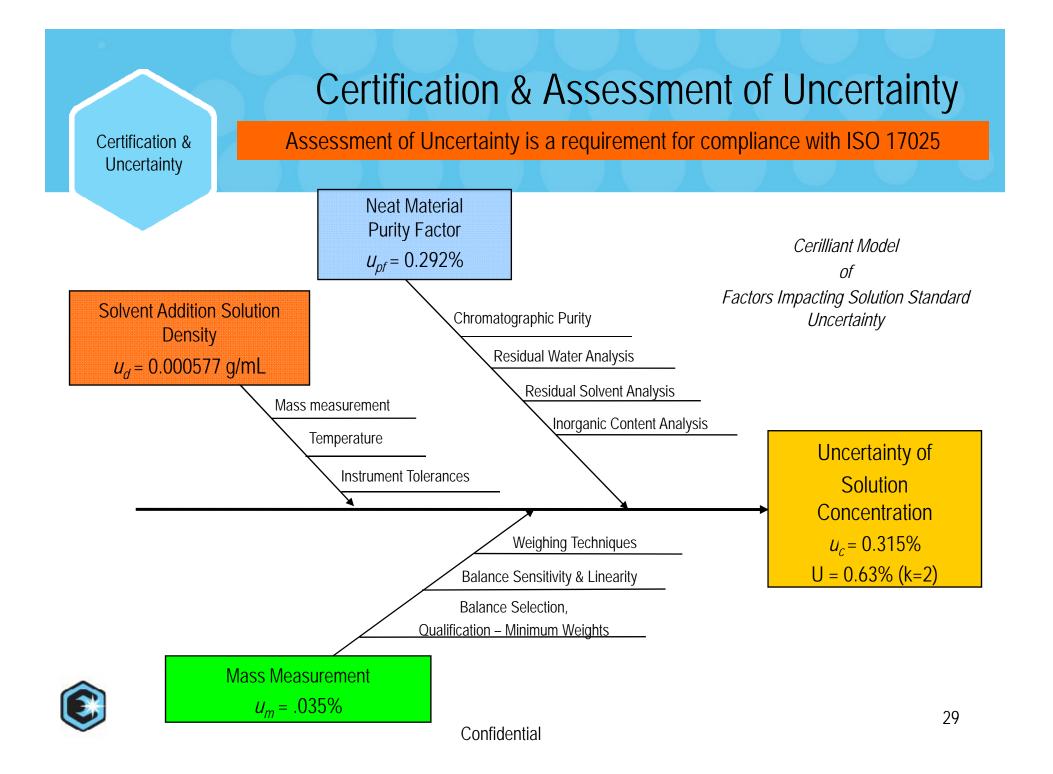
Certification & Uncertainty

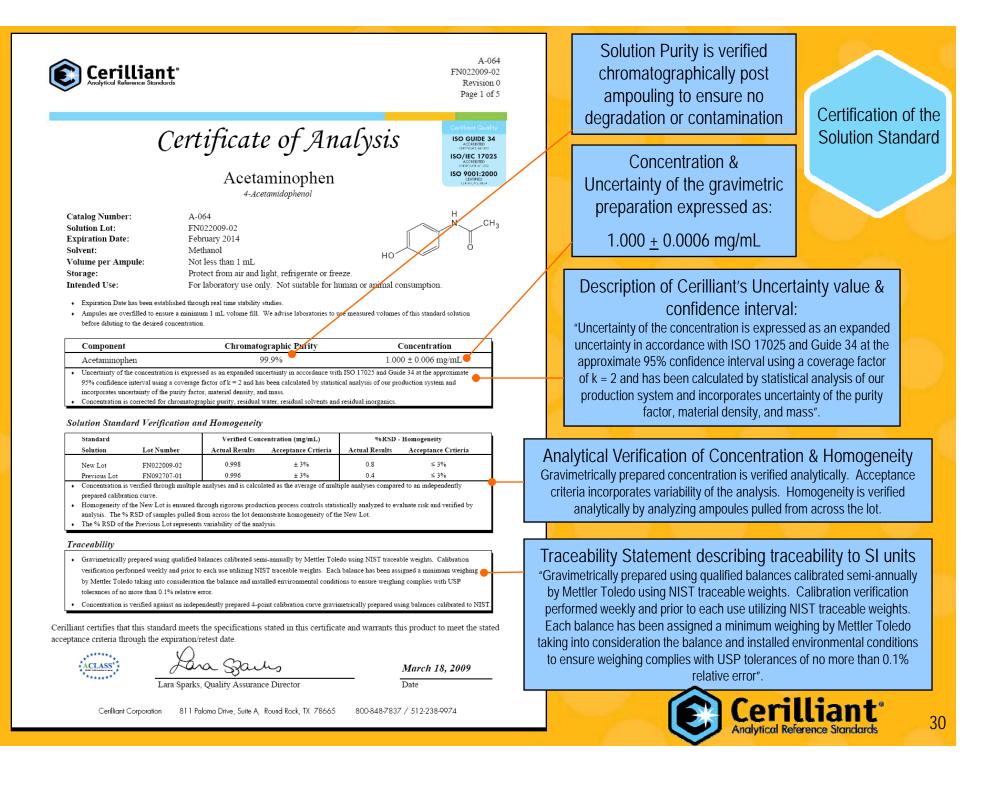
Neat Material Purity

- Uncertainty associated with all testing performed must be included
- Chromatographic purity

 Residual water –
 Residual solvent –
 Residual inorganic content

Mass Measurement


- Uncertainty associated with all weighing operations
- Specific to technique, equipment, scale & environment


Solvent Addition

- Uncertainty associated with the method of solvent addition
- Consider solvent temperature, glassware or balance tolerances, solvent density

Each process was examined in detail and uncertainty determined using a combination of experimental results and instrument and process tolerances.

What Makes a Good Reference Material?

- Fully characterized high purity neat materials and high purity diluents
 - Careful assignment of chromatographic purity by multiple methods
 - Analysis of residual impurities including water, inorganics and solvent
- Validated preparation process ensuring consistency and accuracy of solution concentration, purity & stability
- Qualified balances in their installed state with minimum weighings set for <0.1% relative error
- Gravimetric approach in solvent addition
- Traceability to SI units
- Uncertainty statement encompassing all aspects of standard preparation from neat material characterization to solution preparation.
- Prepared in a stable ampouled format
- Preparation and certification by an ISO Guide 34 and ISO 17025 accredited laboratory

Pre-made Ampouled Certified Solution Standards - A significant advantage over neat reference materials

For information on products and services stop by Booth 208

science, smarter.

Cerilliant Quality

ISO GUIDE 34 CERTIFICATE AR1353

ISO/IEC 17025 CERTIFICATE AT1352

ISO 9001:2008 CERTIFICATE 3854

© 2010 Cerilliant Corporation