Certified Solution Standards for Clinical Applications

AUTHORS Isil Dilek PhD, Kevin Gates, Rebecca Johnson, Sherri Pogue, Mitzi Rettinger, Uma Sreenivasan PhD

Introduction

- Accuracy and reliability of clinical results and medical device performance is dependent on accuracy and reliability of the method of analysis, accuracy in the preparation of samples, and accuracy of the calibrators used.
- Highly pure, well-characterized, solution based standards or reagents are a good and efficient alternative to the use of neat materials in clinical, toxicology and therapeutic drug monitoring applications.
- Certified Solution Standards and Reagents offer a significant advantage over neat reference materials in terms of accuracy, consistency and stability.
- Long term stability of solution based materials is achievable when appropriate parameters are chosen in the design, preparation, packaging, and storage.
 - Results are only as accurate as the reference! Accuracy depends on robustness of the analysis and quality of the reference

Suitable for Quantitative Applications?

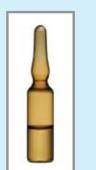
- Prepared using accurate, calibrated, and qualified pipettes, glassware &

- Analyzed to verify accuracy & consistency

What makes a Good Reference Standard - One

- Thoroughly & accurately characterized components
- Traceability of all components
- High purity diluents and/or stabilizers, compatible with the compound(s)
- Uncertainty assessed and reported

Reference Standards Are Critical to the **Quantitation of Drugs in a Clinical Setting** Different Approaches to Reference Standards


Certified Neat Reference Standard

• Analysts weigh neat materials at the bench to prepare volumetric solutions for use as stocks, calibrators and controls

Ampouled Certified Solutions

- Analysts use as-is or dilute volumetrically to stocks, calibrators
- and/or controls • Widely used in clinical, forensic, toxicology, pharmaceutical and environmental testing

High Quality Certified Ampouled Solutions and Spiking Solutions meet all these criteria and when properly designed, packaged, and stored, can remain stable for long periods of time enhancing laboratory productivity and efficiency

A Comparison of Approaches

	Ampouled Certified Solutions	Lab prepared (solutions from neat materials)
Stability over time	Years	Weeks-months
Lot to lot consistency / reproducibility	Large batches: large weighings, one lot available for an extended time & across locations	Frequent smaller weighings, multiple lots, repeat qualification
Homogeneity / concentration	Ampoule to ampoule and across the lot	Cannot be ensured – precipitation/evaporation Hygroscopicity of the neat can affect concentration from weighing to weighing
Efficiency	Reduced labor for bench preparation and certification Controlled substances can be exempt in solution	Repeated weighing, handling, qualification Handling of neat controlled substances requires additional documentation
Material usage/cost	Eliminates waste – stable single use format	More frequent preparation – more disposal
Contamination risk	Single use format – very low risk	Multiple use format – higher risk for bulk contamination
Convenience of use	Snap-N-Shoot®/Snap-N-Spike™	Weigh, dilute, qualify
Unstable/labile materials	Not suitable	Best prepared fresh

Accuracy, Consistency, & Stability achieved through proper Design & Preparation

- Neat material characterization
- Solvent/diluent compatibility

Neat Material Characterization

Complete & accurate characterization of neat material is essential to accuracy of the solution

• Residual Water & Hygroscopicity

quantitative applications.

- A neat reference material may contain residual water and/ or absorb moisture over time despite high chromatographic
- Residual water must be included in the purity factor for
- Absorption of moisture over time will impact subsequent weighing of the material and must be re-evaluated prior to use in quantitative applications.
- Residual Solvent
- A neat reference material may contain residual solvent such as a solvent of crystallization despite high
- chromatographic purity. - Residual solvent must be included in the purity factor for
- quantitative applications. - Residual solvent values should remain stable over time
- when properly stored. • Trace Inorganic Content
- Due to the synthetic route, extraction process, or
- purification procedure, many materials may contain trace - As with residual solvent or water, trace inorganics must be

included in the purity factor for quantitative applications.

Accuracy of solvent addition

Accuracy of weighing operations

Impact of Residual Water/Hygroscopicity Changes in residual water content over time

can significantly impact the purity factor							
Compound	First Analysis Date	Second Analysis Date	First Analysis Water (%)	Second Analysis Water (%)	Months Stored Between Analyses	Increase in Water Content	
Morphine	10/2007	5/2009	0.66	3.36	19	409%	
Morphine-3-ß-D- Glucuronide	1/2007	4/2009	3.11	7.23	28	132%	
Desmethyldoxepin	11/2007	4/2009	0.57	4.11	18	621%	
Norhydrocodone HCl	6/2008	6/2009	1.25	3.12	12	150%	
3'-Hydroxystanozolol-D ₃	3/2008	6/2009	1.74	3.85	15	121%	

Packaging & storage

Assessment of shelf life

Materials were stored under normal freezer conditions in sealed, screw-cap amber vials. Water content was analyzed by Karl Fisher Coulometry based on USP method <921>.

Impact of Residual Content

Compound	Chrom. Purity (%)	Residual Solvent Content (%)	Trace Inorganic Content (%)	Residual Water Content (%)	Purity Factor for Quantitative Use (%)
Albuterol	99.9	0.04	N/A	1.33	98.57
Ranitidine HCl	99.5	0.87	0.13	None Detected	98.47
Oxazepam Glucuronide	99.9	None Detected	2.37	8.96	88.58
Morphine 5/2009	99.8	None Detected	< 0.1%	3.36	96.45
Morphine-3-ß-D- Glucuronide 1/2007	99.6	1.38	< 0.1%	3.11	95.10
Morphine-3-ß-D- Glucuronide 4/2009	99.6	1.38	< 0.1%	7.23	91.00

Without full characterization of the neat material, significant error may be introduced into the concentration of the reference solution

Weighing Accuracy

Larger weighings more accurate

- Improper balance selection can lead to high levels of uncertainty
- Minimum weighings should be established to achieve minimum
- relative error.
- weighings to achieve USP
- Mass Uncertainty Mass Uncertainty Sample 5-place 4-place Mass Balance Balance • Cerilliant specifies minimum 8.0% 45.0% 1 mg tolerances of <0.1% relative error. 0.80% 4.5% 10 mg

100 mg

1000 mg

Importtance of Balance Selection and

0.080%

0.0080%

0.45%

0.045%

	Cerilliant Minimum Weighing Requirements					
Balance	7-place	6-place	5-place	4-place		
Balance Resolution	0.0001 mg	0.001 mg	0.01 mg	0.1 mg		
Minimum Weighing	1 mg	3 mg	20 mg	125 mg		

Balance environment & weighing technique can significantly influence reference accuracy

- Accuracy of weighing can be influenced by:
- tongs vs. gloved hands
- balance equilibration time
- sample and solvent temperature ambient temperature
- vibrations - movement of air
- Air currents, drafts around the balance, and additional vibrational forces on the pan can significantly affect balance repeatability.

For Example:

Cerilliant studies indicate that when gloved hands are used as opposed to tongs for handling sample vials, uncertainty of mass measurement increased approximately 10 fold.

Solvent Addition

Gravimetric addition of solvent provides reproducibility

• Target solvent weight calculated from target volume by adjusting for density.

- Actual solvent weight can be calculated back into volume to report concentration in mg/mL
- Balance is more accurate than volumetric flask
- Temperature affects density thus affecting volume
- Eliminates subjectivity of visual fill line
- Weigh tapes provide traceability to SI units

Method	Batch Size			
Memod	10mL	100mL	1000 mL	
Volumetric flask standard error Source: ASTM E288-03, Standard specification for laboratory glassware, 2003	0.20%	0.08%	0.03%	
Analytical balance uncertainty Balance Type Typical values per Mettler Toledo	5 Place 0.001%	5 Place 0.0001%	1 Place 0.009%	
Values established by Cerilliant based on typical values by Mettler and Cerilliant weighing SOPs	0.0036%	0.00125%	0.009%	

Use of a high quality, qualified, balance has lower error than Class-A volumetric flask

20-30°C expansion

0.792 -

0.79 -

- 0.788 ج

0.786 -

0.784 -

0.782 -

0.78 +

Change in density with temperature can affect volumetric preparation of a solution but can be controlled by gravimetric addition of solvent

- Ensures lot-to-lot consistency
- Differences between sample temperature and solvent temperature • Consistency between sample and reference, calibrators and controls prepared
- on different days or in different environments

Solvent compatibility is critical to long term stability

- Solubility
- Does the target compound dissolve at the required concentration?
- Precipitation can occur over time or at reduced storage temperatures • Compatibility with analysis
- Solvent interferences in the chromatogram: UV cut-off; baseline effects - Non-polar solvents not ideal with reverse phase HPLC
- Water not compatible with GC
- Solvent stability
- THF/ethers form peroxides • Compound stability in the solvent
- Dispensing & Packaging
- Advantage vs. Solutions Stored in Volumetric Flasks • Solution standards dispensed into single use volumes and flame sealed under inert

Snap-N-Shoot® and Snap-N-Spike™ Format

- atmosphere • Process controls ensure
- Consistency of volume dispensed
- Homogeneity from vial to vial and across the lot
- No contamination - No degradation

Provides protection from hygroscopicity, degradation, evaporation and contamination, and promotes stability

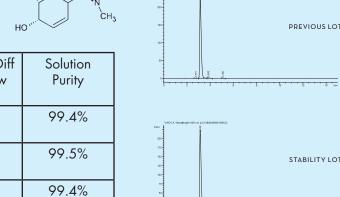
- Expiration (shelf life) is established through real-time stability studies
- Solution purity and concentration are re-evaluated at multiple intervals • Solutions properly designed and prepared can be stable for years

Compound/Solvent	Age of	Solution		Analyzed	
	Stability	Purity		Concentration	
	Sample	Original	Stability	Original	Stability
			Interval		Interval
Fentanyl/methanol	5 years	99.1%	99.9%	97.6	98.6
(ug/mL)					
6-Acetylmorphine/	5.5 years	98.0%	99.5%	98.8	97.8
acetonitrile (ug/mL)					
Nortriptyline HCI/	5 years	99.8%	99.9%	0.995	0.970
methanol (mg/mL)					
Codeine/methanol	5.5 years	99.9%	99.4%	0.989	0.995
(mg/mL)					
Haloperidol/methanol	6 years	99.8%	99.8%	0.988	0.970
(mg/mL)					

Concentration acceptance criteria for each of the examples = \pm 3% and incorporates variability of the analysis.

Codeine

Stability established at 5.5 years Catalog Product: C-006, 1 mg/ml in methanol Analysis Method: HPLC/UV Betasil Phenyl 4.6 x 150 mm Acetonitrile::0.01M Phosphate Buffer


0.8 mL/min Flow Rate: Calibration Curve: Linear Regression Number of Points: 4 Linearity (r): 0.999

35053-15B

1 / 2003

-0.7

0.57% difference in

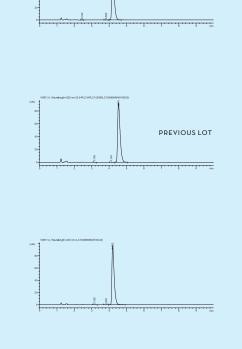
concentration when

prepared volumetrically

at 20° vs. 25°C

Thermochemical Data, CRC Press

Fentanyl


Stability

Stability established at 5 years Catalog Product: F-002, 100 µg/mL in methanol Analysis Method: HPLC/UV

Betasil Phenyl 4.6 x 150 mm Mobile Phase: Acetonitrile::0.01M Phosphate Buffer 1.0 mL/min Flow Rate:

Wavelength: 220 nm Calibration Curve: Linear Regression Number of Points: 4 0.999 Linearity (r):

Solution Lot Number | Manufacture | % Conc. Diff Purity from New Prep New Lot | FE022508-99.8% 2 / 2008 Previous 35315-35B 3 / 2006 -0.5 99.8% Stability 29875-71H 99.9% 1 / 2003 -1.3

Certification & Assessment of Uncertainty

Proper certification should include assessment of uncertainty of the reference preparation

Neat Material Purity

• Uncertainty associated with all testing performed for neat material certification must be included.

• Chromatographic purity – Residual water – Residual

type, and analytical technique (number and type)

- solvent Residual inorganic content • Uncertainty influenced by sample size, instrument
- Mass Measurement

procedures

during standard production.

- Solvent Addition • Uncertainty associated with all weighing operations
- Specific to the weighing technique, equipment used, scale of production, environment, and weighing
- Solution density • Uncertainty associated with the method of solvent
 - addition. • Consider solvent temperature, glassware or

balance tolerances, solvent density

Each of these processes was examined in detail and uncertainty determined using a combination of experimental results and instrument and process tolerances.

© 2009 Cerilliant Corporation | 811 Paloma Drive | Round Rock, TX 78665

Cerilliant Uncertainty Model Neat Material Purity Factor Solvent Addition Solution Density $v_d = 0.000577 \text{ g/mL}$ $v_{pf} = 0.292\%$ Chromatographic Purity Mass measurement Residual Water Analysis Temperature Residual Solvent Analysis Instrument Tolerances Inorganic Content Analysis Uncertainty of Solution Concentration $v_c = 0.315\%$ Weighing Techniques U = 0.63% (k=2)Balance Sensitivity & Linearity Balance Selection, Qualification – Minimum Weights Mass Measurement $v_m = 0.035\%$ Assessment of Uncertainty is a requirement for compliance with ISO 17025

Conclusion

Properly Prepared Certified Spiking Solutions™ & Solution Standards Are An Excellent Alternative to the Use of Neat Materials for Clinical and Toxicology Applications

• Single use format produced in large lots

- Low risk of contamination More efficient use of material
- Improved consistency and accuracy
- Larger weighings • Single lot used over longer periods of time and across locations
- Reduces labor and time for routine reference preparation at the bench • Sealed containers and inert environment protect against evaporation and degradation
- Solution stability established through testing
- USDEA exemptions for solutions of controlled substances available

Ampouled Certified Spiking Solutions & Solution Standards are Accurate, **Consistent and Efficient**