

High Quality, Certified Snap-N-Shoot® Standards of Reb A and Stevia Impurities ensure accuracy and consistency in Quantitative Applications

Cerilliant Quality ISO GUIDE 34 ISO/IEC 17025 ISO 9001:2008 GMP/GLP

© 2010 Cerilliant Corporation

Introduction

- FDA's "no objection letters" in December 2008, opened the door to food and beverage companies to use Reb A in food products as long as the purity is no less than 95%
- Laboratories are now challenged with quantifying the percent of Reb A in the plant based material
- For food and beverage manufacturers, it is not enough to receive a vendor's certificate of analysis, it's important to verify the quality and purity of the product
- Reb A, a component of the Stevia leaf, has naturally occurring impurities that are variable depending on environmental conditions of farming, process of cultivation, harvest, and isolation/blending
- Accuracy of this quantification depends on robustness of the analysis and quality of the reference
- To accurately quantify the % Reb A (Assay) the lab must start with accurate reference standards

Results are only as accurate as the reference!

Technical Challenges in Analyzing Steviol Glycosides

- Material Properties
 - Multiple sources with varying impurity profiles
 - Hygroscopicity
- Analytical methods
 - Different methods yield different results
- Accuracy of Reference Standards
 - Certification
 - Process controls in preparation of solutions
 - Stability

Chromatographic Purity – Only the Beginning...

The COA reads 97% - is it really?

- Residual Water & Hygroscopicity
 - The hygroscopic nature of Reb A and Reb A impurities provides a significant challenge to the accurate determination of purity/potency
 - Absorption of moisture over time means water content must be re-evaluated prior to each use in quantitative applications
- Residual Solvent
 - A neat reference material such as Reb A may contain residual solvent from processing the plant despite high chromatographic purity
- Trace Inorganic Content
 - Due to the environmental conditions of the farmland, extraction process, or purification procedure, many materials may contain trace inorganics

Use of a Purity/Potency Factor mass balance equation is critical to properly calculate the amount of material needed to achieve accurate concentration of the reference standard

 $PurityFactor = \left[100 - (wt\%OVI) - (wt\%H_2O) - (wt\%ROI)\right] * \frac{ChromPurity}{100}$

 $\pm U$

Purity Factor Impact

Compound	Chrom. Purity (%)	Residual Solvent Content (%)	Trace Inorganic Content (%)	Residual Water Content (%)	Purity Factor for Quantitativ e Use (%)	PF Difference from Chrom Purity (%)
Rebaudioside A	98.39	1.19	<0.1	5.58	91.73	-6.66
Rebaudioside B	86.11	0.06	<0.1	4.17	82.47	-3.64
Rebaudioside D	91.51	0.22	<0.1	4.57	87.12	-4.39
Steviol	99.22	1.74	<0.1	1.55	95.52	-3.70
Stevioside	92.33	0.86	<0.1	4.44	87.44	-4.89
Steviolbioside	92.02	0.45	<0.1	9.86	82.53	-9.49
Rubusoside	98.32	0.42	<0.1	3.90	94.07	-4.25

Without full characterization of the neat material, significant error may be introduced into the concentration of the reference solution.

Analysis of Rebaudioside A and its Impurities

The analytical method needs to be accurate, robust, repeatable and reliable and should provide resolution of all impurities.

Cerilliant Method

Analysis Method	HPLC/UV
Column	Prodigy ODS 3, 5µ, 4.6 x 250 mm
Mobile Phase	Acetonitrile:0.1% H_3PO_4 (35:65)
Flow Rate	1.0 mL/minute
Wavelength	210 nm

USP Method

Analysis Method	HPLC/UV
Column	Luna NH ₂ , 5µ, 4.6 x 150 mm
Mobile Phase	Acetonitrile: Ammonium Acetate (80:20)
Flow Rate	1.0 mL/minute
Wavelength	210 nm

Reb A & Reb A Impurities Chromatograms

Cerilliant Method

USP Method

Reb A Standard

Reb A Impurities Standard

Additional Observations USP Monograph Method

Use of "Equivalent" Amino Columns in Analysis of Reb A Impurities by USP Monograph

Compound	Agilent Zorbax NH ₂ Retention Time (min.)	Phenomenex Luna NH ₂ Retention Time (min.)
Reb A	7.1	7.2
Reb B	36	11.1
Reb D	16	17.2
Stevioside	4.5	4.2
Steviolbioside	18	6.2
Rubusoside	3.0	2.2

- While the suggested column in the USP Monograph is a Zorbax NH₂, use of an equivalent Luna NH₂ results in elution order differences of the impurities.
- Elution order differences represent a major challenge for the monograph since it calls for impurity identification by retention time (and not relative retention time).

Use of Certified Reference Standards of Reb A Impurities eliminates this issue

Accuracy of Reference Standards Critical to Accurate Quantitation

Certified Neat Reference Standard

- Analysts prepare volumetric solutions by weighing neat materials and diluting
- Chrom purity alone insufficient
 - Residual content must be considered and weighing adjustments made
- Storage & stability
 - Evaluate water content before each use
 - Concentration of stock solutions may change over time

Snap-N-Shoot[®] Certified Solution Standard

- Premade solution for immediate use as-is or in dilutions
- Chrom purity and residual impurities are accounted for at time of preparation
- Certified value remains constant
- Ampouled format prevents changes over time due to hygroscopicity, degradation or evaporation
- Single use format for consistency; eliminates contamination issues

Snap-N-Shoot[®] Certified Solution Standards

- Preparation begins with full characterization of the neat material
 - Chrom purity through use of multiple methods/techniques
 - eliminates improper assignment due to random analytical error results must agree within 0.5%
 - ensuring separation of impurities
 - All residual impurities
 - water content by Karl Fisher
 - residual solvent by GC/FID headspacce
 - Inorganic content by microash
 - Identity confirmation by multiple methods
- Preparation Process controls
 - Material handling, weighing & dilution accuracy, dispensing & homogeneity controls, and traceability
- Certification of ampouled solution concentration and ampoule to ampoule consistency
- Stability

Weighing Accuracy

Balance environment & weighing technique and can significantly influence reference accuracy

- Balance Selection
 - Qualified balances calibrations traceable to NIST
 - Minimum weighings established to achieve USP tolerances of NMT 0.1% relative error
 - 5, 6, & 7 place balances
- Accuracy of weighing can be influenced by:
 - tongs vs. gloved hands
 - balance equilibration time
 - sample and solvent temperature
 - ambient temperature
 - vibrations
 - movement of air
- Hygroscopic materials handled in glove box
 - Inert atmosphere
 - Relative humidity $\leq 5\%$

Included for reference

Size of Weighing Influences Accuracy

Importance of Balance Selection and Mass Uncertainty				
Sample Mass	Mass Uncertainty			
Sample Mass	5-place Balance	4-place Balance		
1 mg	8.0%	45.0%		
10 mg	0.80% 4.5%			
100 mg	0.080%	0.45%		
1000 mg	0.0080%	0.045%		

Larger weighings are more accurate. Can be costly with with expensive impurities

Cerilliant Minimum Weighing Requirements					
Balance	7-place	6-place	5-place	4-place	
Balance Resolution	0.0001 mg	0.001 mg	0.01 mg	0.1 mg	
Minimum Weighing	1 mg	3 mg	20 mg	125 mg	

Gravimetric Approach Add Solvent by Weight

Gravimetric addition of diluent provides reproducibility

- Target solvent weight calculated from target volume by adjusting for density. Actual solvent weight can be calculated back into volume to report concentration in mg/mL
- Ensures lot-to-lot consistency Measurement of volume by mass eliminates temperature dependence of flask accuracy and allows all solutions to be consistently prepared at the same chosen reference temperature.
- Eliminates the subjectivity of visual fill line in volumetric addition
- Mass measurements provide traceability to SI units of measure
- Weigh tapes provide an audit trail
- Allows accurate formulation of batch volumes well beyond the capacity of Class-A flasks

Included for reference

Diluent Addition Gravimetric vs. Volumetric Methods

Thermal expansion will affect volumetric accuracy of calibrated flasks

0.21% difference in concentration of aqueous solutions when prepared volumetrically at 15° vs. 25°C

Source: Chemical Handbook Fundamental Version, Rev. 3 (1984)

Method	Batch Size			
Meniod	10 mL	100 mL	1000 mL	
Volumetric flask standard error				
Source: ASTM E288-03, Standard specification for laboratory glassware, 2003	0.20%	0.08%	0.03%	
Analytical balance uncertainty				
Balance Type	5 Place	5 Place	1 Place	
Typical values per Mettler Toledo	0.001%	0.0001%	0.009%	
Values established by Cerilliant based on typical values by Mettler and Cerilliant weighing SOPs	0.0036%	0.00125%	0.009%	

Use of high quality, qualified, balance has lower error than Class-A volumetric flask

Cerilliant's approach

Dispensing & Packaging

- Solution standards dispensed into single use volumes and flame sealed under inert atmosphere
- Process controls ensure
 - Consistency of volume dispensed
 - Homogeneity from vial to vial and across the lot
 - No contamination
 - No degradation

© 2010 Cerilliant Corporation

Flame sealed under argon into amber ampoules

Protection from degradation, evaporation, & contamination

Cerilliant's approach

Analytical Verification & Certification

Concentration and Ampoule to Ampoule Consistency analytically verified post ampouling

- Solution standard concentration is verified analytically by comparison to a multipoint independently prepared calibration curve.
- Homogeneity across the lot is verified by testing samples pulled from across the lot. A stratified random sampling plan is utilized and includes samples of the first and last ten ampoules plus one per every 400 ampoules dispensed.
- Solution purity is verified to demonstrate no contamination or degradation has occurred during preparation

Solution Stability

Enhanced stability achieved with properly prepared ampouled solutions

- Expiration (shelf life) is established through real-time stability studies
- Solution purity and concentration are re-evaluated at multiple intervals
- 6 months of shelf life has been established for Reb A and Reb A Impurities solution standards. Stability studies are on going.

Neat Material	98.4%
Solution Purity Time Zero	98.7%
Solution Purity 6 months	98.2%

Reb A & Reb A Impurities Solution Stability

Reb A, 1 mg/mL 50: 50 Acetonitrile: Water Reb A Impurities Mix, 100 ug/mL 50: 50 Acetonitrile: Water

Traceability

Traceability is the property of a measurement result whereby it can be related to stated references usually through national or international standards through an unbroken chain of comparisons all having stated uncertainties.

- Prepared and certified to ISO Guide 34 and ISO/IEC 17025 standards
- Neat material certification by ISO/IEC 17025 accredited testing lab.
- Balances installed, qualified and calibrated semiannually by ISO/IEC 17025 accredited testing lab utilizing NIST traceable weights.
- Weekly and pre-use calibration verifications performed using NIST traceable weights preuse verification weigh tapes included in solution standard batch record.
- Gravimetric preparation for analyte and diluent weigh tapes included in solution standard batch record traceability to SI units of measure.
- Analytical verification of concentration and homogeneity by ISO/IEC 17025 accredited testing lab utilizing validated methods.
- The concentration is reported with uncertainty in accordance with ISO/IEC 17025 and ISO Guide 34.
- The uncertainty value is reported with a coverage factor, k=2, representing an approximately 95% confidence for the stated concentration.
- The neat material traceability and test data are provided on the COA.

Traceability is Provided from Beginning to End

Cerilliant's approach

S-016

Certification and Uncertainty of Reb A & Reb A Impurities Solution Standards

Cerillian	t.			S-016 809-01 rision 2 e 1 of 6	2
(Certificate of A	Analysis	S 150,00 150,00	UDE 34 Startou	
r-16-en-18-oic acid,13-[O-	Rebaudioside β-D-giucopyranosyi-(1 → 2)-O-[β-D-giuco giucopyranosyi ester.(4 a)-	pyranosyl-(1 → 3)]- β	CONTYIC	01:2000 7-, β-D-	
atalog Number: olution Lot: (etest Date: ohvent: 'olume per Ampule: torage: atended Use:	S-016 FN051809-01 July 2010 Acctonitrile::Water (1::1) Not less than 1 mL Protect from air and light, refrigerate For laboratory use only. Not suitable ongoing. Certificate of Analysis will be updated upor	e for human or animal	-} -}	5-	
	ure a minimum 1 mL volume fill. We advise laborato		es of this standard solution		
95% confidence interval usin incorporates uncertainty of th	Chromatographic Purity 98.4% ion is expressed as an expanded uncertainty in accorda g a coverage factor of k = 2 and has been calculated by purity factor, material density, and balance and weig reinforce purity. Each weight experiment of the second density of the second density and balance and weight experiment according to the second density of the	1.0 ince with ISO 17025 and G v statistical analysis of our p hing technique.	roduction system and		
Rebaudioside A Uncertainty of the concentration 95% confidence interval usin incorporates uncertainty of the Concentration is corrected for Solution Standard Verifit Standard	98,4% ion is expressed as an expanded uncertainty in accords g a coverage factor of k = 2 and has been calculated by purity factor, material density, and balance and weig chromatographic purity, residual water, residual solv ication and Homogeneity Verified Cancentration (mg/mL	I.t ince with ISO 17025 and G yatistical analysis of our fing technique. ents and residual inorganice where the statement of the statement of the statement o	000 ± 0.006 mg/mL nide 34 at the approximate moduction system and		
Rebaudioside A Uncertainty of the concentrat 9% confidence interval usin incorporates uncertainty of th Concentration is corrected for Solution Standard Verifi	98.4% ion is expressed as an expanded uncertainty in accords a coverage factor of k - 2 and has been calculated by purity factor, material density, and balance and weig rehomatographic purity, residual water, residual solv ication and Homogeneity Verified Concentration (mg/mL Actual Result: Acceptance Cri-	I.t ince with ISO 17025 and G yatistical analysis of our fing technique. ents and residual inorganice where the statement of the statement of the statement o	000 ± 0.006 mg/mL nide 34 at the approximate reduction system and		
Rebaudioside A Uncertainty of the concentrat 39% confidence interval lumit incorporates uncertainty of th Concentration is corrected for Solution Standard Verifi Standard Solution Lot Problem New Lot FN0518 Concentration is verified they prepared calibration curve. Homogeneity of the New Lot analysis. The % RSD of sam Traceability Concentrationally prepared usin verification performed weekly by Metiler Toledo taking into kolesnaces of no more than 0. Concentration is verified again	98.4% - ion is expressed as an expanded uncertainty in accords a 2 and the been calculated by putity factor, material density, and balance and weig chromatographic putity, residual water, residual solv ication and Homogeneity Variation and Homogeneity abse Actual Revult Actual Revult Acceptance Or 09-01 1.09 2.3% uigh multiple analyses and is calculated as the average is ensured through rigonous production process contra ples pulled from across the lot demonstrate homogene ug qualified balances calibrated semi-annually by Mett y and prior to each use utilizing NIST traceable weigh consideration the balance and installed are simmental 1% relative error.	I.i mce with ISO 17025 and 0 statistical analysis of our plane mess and residual inorganice mess and residual inorganice of the second sec	000 ± 0.008 mg/mL idd: 34 at the approximate meduction system and a b b Homogenesity Acceptance Critieria ≤ 3% urd to an independently evaluate risk and verified by evaluate risk and verified by inig complies with USP using balances calibrated to ?	NIST.	
Rebatdioside A Uncertainty of the concentrant 95% confidence interval lumit incorporates uncertainty of th Concentration is connected for Solution Standard Verifi Standard Standard Verifi Standard Standard Verification Solution Let Nu New Lot FN0511 Concentration is verified use prepared calibration curve. Homogeneity of the New Lot arabysis. The % RSD of sam Traceability Gravimentrically prepared usis verification performed weakly by Mettler Toledo taking into ulterares of no more than 0. Concentration is verified again liant certifies that this stand ptance criteria through the	98,4% - ion is expressed as an expanded uncertainty in accords a caverage factor of k - 2 and has been calculated by putily factor, material density, and balance and weig chromatographic purity, residual water, residual solv ication and Homogeneity Verified Concentration (acguat aber Actual Result according factor, material density, and balance and weig ication and Homogeneity Verified Concentration (acguat aber Actual Result Actual Result Acceptance Cri 100-0 ± 3% ugh multiple analyses and is calculated as the average is ensured through rigorous production process contraples pulled from across the lot demonstrate homogene ag qualified balances calibrated semi-annually by Metty and prior to each use utilizing NIST traceable weight consideration the balance and installed environmental Wis relative error.	Li nce with ISO 17025 and G statistical analysis of our p hing technique. ents and residual inorganic: and residual inorganic: Actual Result 0.2 of multiple analyses comp as statistically analyzed to riy of the New Lot. Her Toledo using NIST tracs to Each balance has been a lo conditions to ensure weigh e gravimetrically prepared vertificate and warrant ed as recommended.	000 ± 0.006 mg/ml_ nide 34 at the approximate recoduction system and sevendencion system and sevendencion system and sevendencion system and seventiate the sevent seven	NIST. he stated d shortly	

Configure Composition R11 Palama Dates Suite & Round Rock TX 78665 800-848-7837 / 512-238-0074

FN051809-01 Revision 2 Page 2 of 6 dard Solution Assay Parameters Calibration Curve alysis Method: HPLC/UV Calibration Curve: Linear Regression Prodigy 5µ, 250 x 4.6 mm Number of Points: lumn: lobile Phase: Acetonitrile: 0.1% Phosphoric Acid in Water (35::65) 0.999 Linearity (r): low Eate: 1.0 mL/min avelength: 210 nm t Material Data impound Name: Rebandioside A Chemical Formula: Call:0 mound Let: PN021209-01 CAS Number 58543-16-1 Molecular Weight 976.01 Neat Material Characterization Summary rtical Test Method Results y Chromatographic Purity by HPLC/PDA Analysis SP10-0102 98.4% iary Purity by Thin Layer Chromatography SP10-0106 Single Spot, $R_f = 0.62$ y by LC/MS Analysis SP10-0107 Consistent with Structure v by ¹H-NMR Analysis USP <761>, SP10-0116 Consistent with Structure al Solvent Analysis by GC/FID Headspace AM10871 1.19% al Water Analysis by Karl Fischer Coulometry USP <921>, SP10-0103 5.58% nic Content by Microash Analysis SP10-0135 < 0.1% Metals Analysis by ICP/MS Outsourced Not Detected for Lead and Amenia $[\alpha]^{25}_{D} = -30.2^{\circ}$ ic Rotation SP10-0133 (c =0.39, ethanol::water (50::50)) 91.7% Factor imary purity is calculated as the average of two independently performed analyses utilizing two different methods. Acceptance criteria requires the urity values to be within 0.5% of each other he primary chromatographic purity value is used to calculate the Purity Factor secondary chromatographic purity method is utilized as a control. rity Factor = [(100 - wt% residual solvent - wt% residual water - wt% residual inorganics) x Chromatographic Purity/100]. rity factor does not include adjustment for chiral and/or isotopic purity. alidated analytical method © 2010 Cerilliant Corporation Carilliant Corporation 811 Paloma Drive, Suite A, Round Rock, TX 78665 800-848-7837 / 512-238-9974

A Comparison of Approaches

	Cerilliant Snap-N-Shoot® Certified Solution Standards	Certified Neat Reference Material (solutions from neat materials)
Accuracy & Stability		
Lot to lot consistency / Reproducibility	One lot available for an extended time providing consistency throughout supply chain analysis	More variability and labor costs & inconsistency of reference may lead to possible product batch investigation and/or rejections
Concentration Accuracy	Consistent across lot & preserved in ampouled format	Cannot be ensured – Hygroscopicity of the neat affects concentration from weighing to weighing Stored bulk solutions can concentrate over time due to evaporation of solvent
Stability over time	Years	Weeks-months
Cost Efficiencies		
Labor	Eliminated labor required to analyze neat, weigh, an prepare stock solutions	More labor; more cost
Materials	Reduced material costs	Increase in material usage due to frequent weighings (important on costly impurities)
Convenience of use	"Snap (dilute) and Shoot"	Weigh, dilute, verify

© 2009 Cerilliant Corporation

Problem	Reb A and Reb A impurities are challenging to accurately analyze using a single method Different methods produce different results Residual impurities in and hygroscopicity of neat materials mean care must be taken in preparation of assay reference solutions
Solution	Use of high quality certified ampouled solution standards eliminates issues of method variability and difficulties with accurately preparing assay reference solutions Cerilliant offers Snap-N-Shoot® Certified Solution Standards of Rebaudioside A and Rebaudioside A impurities in an accurate and convenient format for quantitative & qualitative testing of Reb A ingredients

science, smarter.

Cerilliant Quality ISO GUIDE 34 ISO/IEC 17025 ISO 9001:2008 GMP/GLP