

High Quality, Certified Snap-N-Shoot® Standards of Reb A and Stevia Impurities ensure accuracy and consistency in Quantitative Applications

science, smarter.

Cerilliant Quality
ISO GUIDE 34
ISO/IEC 17025
ISO 9001:2008
GMP/GLP

Introduction

- FDA's "no objection letters" in December 2008, opened the door to food and beverage companies to use Reb A in food products as long as the purity is no less than 95%
- Laboratories are now challenged with quantifying the percent of Reb A in the plant based material
- For food and beverage manufacturers, it is not enough to receive a vendor's certificate of analysis, it's important to verify the quality and purity of the product
- Reb A, a component of the Stevia leaf, has naturally occurring impurities that are variable depending on environmental conditions of farming, process of cultivation, harvest, and isolation/blending
- Accuracy of this quantification depends on robustness of the analysis and quality of the reference
- To accurately quantify the % Reb A (Assay) the lab must start with accurate reference standards

Technical Challenges in Analyzing Steviol Glycosides

- Material Properties
 - Multiple sources with varying impurity profiles
 - Hygroscopicity
- Analytical methods
 - Different methods yield different results
- Accuracy of Reference Standards
 - Certification
 - Process controls in preparation of solutions
 - Stability

Chromatographic Purity – Only the Beginning...

The COA reads 97% - is it really?

Residual Water & Hygroscopicity

- The hygroscopic nature of Reb A and Reb A impurities provides a significant challenge to the accurate determination of purity/potency
- Absorption of moisture over time means water content must be re-evaluated prior to each use in quantitative applications

Residual Solvent

 A neat reference material such as Reb A may contain residual solvent from processing the plant despite high chromatographic purity

Trace Inorganic Content

 Due to the environmental conditions of the farmland, extraction process, or purification procedure, many materials may contain trace inorganics

Use of a Purity/Potency Factor mass balance equation is critical to properly calculate the amount of material needed to achieve accurate concentration of the reference standard

$$PurityFactor = \left[[100 - (wt\%OVI) - (wt\%H_2O) - (wt\%ROI)] * \frac{ChromPurity}{100} \right] \pm U$$

Purity Factor Impact

Compound	Chrom. Purity (%)	Residual Solvent Content (%)	Trace Inorganic Content (%)	Residual Water Content (%)	Purity Factor for Quantitativ e Use (%)	PF Difference from Chrom Purity (%)
Rebaudioside A	98.39	1.19	<0.1	5.58	91.73	-6.66
Rebaudioside B	86.11	0.06	<0.1	4.17	82.47	-3.64
Rebaudioside D	91.51	0.22	<0.1	4.57	87.12	-4.39
Steviol	99.22	1.74	<0.1	1.55	95.52	-3.70
Stevioside	92.33	0.86	<0.1	4.44	87.44	-4.89
Steviolbioside	92.02	0.45	<0.1	9.86	82.53	-9.49
Rubusoside	98.32	0.42	<0.1	3.90	94.07	-4.25

Without full characterization of the neat material, significant error may be introduced into the concentration of the reference solution.

Analysis of Rebaudioside A and its Impurities

The analytical method needs to be accurate, robust, repeatable and reliable and should provide resolution of all impurities.

Cerilliant Method

Analysis Method	HPLC/UV
Column	Prodigy ODS 3, 5µ, 4.6 x 250 mm
Mobile Phase	Acetonitrile:0.1% H_3PO_4 (35:65)
Flow Rate	1.0 mL/minute
Wavelength	210 nm

USP Method

Analysis Method	HPLC/UV
Column	Luna NH ₂ , 5µ, 4.6 x 150 mm
Mobile Phase	Acetonitrile: Ammonium Acetate (80:20)
Flow Rate	1.0 mL/minute
Wavelength	210 nm

Reb A & Reb A Impurities Chromatograms

Cerilliant Method

USP Method

Reb A Standard

Reb A Impurities Standard

Additional Observations USP Monograph Method

Use of "Equivalent" Amino Columns in Analysis of Reb A Impurities by USP Monograph

Compound	Agilent Zorbax NH ₂ Retention Time (min.)	Phenomenex Luna NH ₂ Retention Time (min.)
Reb A	7.1	7.2
Reb B	36	11.1
Reb D	16	17.2
Stevioside	4.5	4.2
Steviolbioside	18	6.2
Rubusoside	3.0	2.2

- While the suggested column in the USP Monograph is a Zorbax NH₂, use of an equivalent Luna NH₂ results in elution order differences of the impurities.
- Elution order differences represent a major challenge for the monograph since it calls for impurity identification by retention time (and not relative retention time).

Use of Certified Reference Standards of Reb A Impurities eliminates this issue

Accuracy of Reference Standards Critical to Accurate Quantitation

Certified Neat Reference Standard

- Analysts prepare volumetric solutions by weighing neat materials and diluting
- Chrom purity alone insufficient
 - Residual content must be considered and weighing adjustments made
- Storage & stability
 - Evaluate water content before each use
 - Concentration of stock solutions may change over time

- Premade solution for immediate use as-is or in dilutions
- Chrom purity and residual impurities are accounted for at time of preparation
- Certified value remains constant
- Ampouled format prevents changes over time due to hygroscopicity, degradation or evaporation
- Single use format for consistency; eliminates contamination issues

Snap-N-Shoot® Certified Solution Standards

- Preparation begins with full characterization of the neat material
 - Chrom purity through use of multiple methods/techniques
 - eliminates improper assignment due to random analytical error results must agree within 0.5%
 - ensuring separation of impurities
 - All residual impurities
 - water content by Karl Fisher
 - residual solvent by GC/FID headspacce
 - Inorganic content by microash
 - Identity confirmation by multiple methods
- Preparation Process controls
 - Material handling, weighing & dilution accuracy, dispensing & homogeneity controls, and traceability
- Certification of ampouled solution concentration and ampoule to ampoule consistency
- Stability

Weighing Accuracy

Balance environment & weighing technique and can significantly influence reference accuracy

- Balance Selection
 - Qualified balances calibrations traceable to NIST
 - Minimum weighings established to achieve USP tolerances of NMT 0.1% relative error
 - 5, 6, & 7 place balances
- Accuracy of weighing can be influenced by:
 - tongs vs. gloved hands
 - balance equilibration time
 - sample and solvent temperature
 - ambient temperature
 - vibrations
 - movement of air
- Hygroscopic materials handled in glove box
 - Inert atmosphere
 - Relative humidity $\leq 5\%$

Size of Weighing Influences Accuracy

Importance of Balance Selection and Mass Uncertainty							
Mass Uncertainty							
Sample Mass	5-place Balance	4-place Balance					
1 mg	8.0%	45.0%					
10 mg	0.80%	4.5%					
100 mg	0.080%	0.45%					
1000 mg	0.0080%	0.045%					

Larger weighings are more accurate.

Can be costly with with expensive impurities

Cerilliant Minimum Weighing Requirements						
Balance	7-place	6-place	5-place	4-place		
Balance Resolution	0.0001 mg	0.001 mg	0.01 mg	0.1 mg		
Minimum Weighing	1 mg	3 mg	20 mg	125 mg		

Gravimetric Approach Add Solvent by Weight

Gravimetric addition of diluent provides reproducibility

- Target solvent weight calculated from target volume by adjusting for density. Actual solvent weight can be calculated back into volume to report concentration in mg/mL
- Ensures lot-to-lot consistency Measurement of volume by mass eliminates temperature dependence of flask accuracy and allows all solutions to be consistently prepared at the same chosen reference temperature.
- Eliminates the subjectivity of visual fill line in volumetric addition
- Mass measurements provide traceability to SI units of measure
- Weigh tapes provide an audit trail
- Allows accurate formulation of batch volumes well beyond the capacity of Class-A flasks

Diluent Addition Gravimetric vs. Volumetric Methods

Thermal expansion will affect volumetric accuracy of calibrated flasks

0.21% difference in concentration of aqueous solutions when prepared volumetrically at 15° vs. 25°C

Source: Chemical Handbook Fundamental Version, Rev. 3 (1984)

Method	Batch Size			
Memod	10 mL	100 mL	1000 mL	
Volumetric flask standard error				
Source: ASTM E288-03, Standard specification for laboratory glassware, 2003	0.20%	0.08%	0.03%	
Analytical balance uncertainty				
Balance Type	5 Place	5 Place	1 Place	
Typical values per Mettler Toledo	0.001%	0.0001%	0.009%	
Values established by Cerilliant based on typical values by Mettler and Cerilliant weighing SOPs	0.0036%	0.00125%	0.009%	

Use of high quality, qualified, balance has lower error than Class-A volumetric flask

Dispensing & Packaging

- Solution standards dispensed into single use volumes and flame sealed under inert atmosphere
- Process controls ensure
 - Consistency of volume dispensed
 - Homogeneity from vial to vial and across the lot
 - No contamination
 - No degradation

Flame sealed under argon into amber ampoules

Protection from degradation, evaporation, & contamination

Cerilliant's approach

Analytical Verification & Certification

Concentration and Ampoule to Ampoule to Ampoule Consistency analytically verified post ampouling

- Solution standard concentration is verified analytically by comparison to a multipoint independently prepared calibration curve.
- Homogeneity across the lot is verified by testing samples pulled from across the lot. A stratified random sampling plan is utilized and includes samples of the first and last ten ampoules plus one per every 400 ampoules dispensed.
- Solution purity is verified to demonstrate no contamination or degradation has occurred during preparation

Solution Stability

Enhanced stability achieved with properly prepared ampouled solutions

- Expiration (shelf life) is established through real-time stability studies
- Solution purity and concentration are re-evaluated at multiple intervals
- 6 months of shelf life has been established for Reb A and Reb A Impurities solution standards. Stability studies are on going.

Neat Material	98.4%
Solution Purity Time Zero	98.7%
Solution Purity 6 months	98.2%

Reb A & Reb A Impurities Solution Stability

Reb A, 1 mg/mL 50: 50 Acetonitrile: Water Reb A Impurities Mix, 100 ug/mL 50: 50 Acetonitrile: Water

Time 0

6 Months

Time 0

6 Months

Traceability

Traceability is the property of a measurement result whereby it can be related to stated references usually through national or international standards through an unbroken chain of comparisons all having stated uncertainties.

- Prepared and certified to ISO Guide 34 and ISO/IEC 17025 standards
- Neat material certification by ISO/IEC 17025 accredited testing lab.
- Balances installed, qualified and calibrated semiannually by ISO/IEC 17025 accredited testing lab utilizing NIST traceable weights.
- Weekly and pre-use calibration verifications performed using NIST traceable weights preuse verification weigh tapes included in solution standard batch record.
- Gravimetric preparation for analyte and diluent weigh tapes included in solution standard batch record traceability to SI units of measure.
- Analytical verification of concentration and homogeneity by ISO/IEC 17025 accredited testing lab utilizing validated methods.
- The concentration is reported with uncertainty in accordance with ISO/IEC 17025 and ISO Guide 34.
- The uncertainty value is reported with a coverage factor, k=2, representing an approximately 95% confidence for the stated concentration.
- The neat material traceability and test data are provided on the COA.

Traceability is Provided from Beginning to End

Cerilliant's approach

Certification and Uncertainty of Reb A & Reb A Impurities Solution Standards

FN051809-01 Revision 2 Page 1 of 6

Certificate of Analysis

ISO GUIDE 34 ISO/IEC 17025 150 9001:2000

Rebaudioside A

Kaur-16-en-18-oic acid 13- $[O-\beta-D-glucopyranosyl-(1\rightarrow 2)-O-[\beta-D-glucopyranosyl-(1\rightarrow 3)]-\beta-D-glucopyranosyl]-$, $\beta-D-glucopyranosyl-glucopyr$ glucopyranosyl ester, (4 a)-(9CI)

Catalog Number: S-016 Solution Lot: FN051809-01 Retest Date: July 2010

Solvent: Acetonitrile::Water (1::1) Volume per Ampule Not less than 1 mL

Protect from air and light, refrigerate or freeze Storage: Intended Use: For laboratory use only. Not suitable for human or animal consumpt

- · Retest Date stability studies ongoing. Certificate of Analysis will be updated upon completion of retest.
- . Ampules are overfilled to ensure a minimum 1 mL volume full. We advise laboratories to use measured volumes of this standard solution before diluting to the desired concentration

Component	Chromatographic Purity	Concentration				
Rebaudioside A	98.4%	$1.000 \pm 0.006 \text{mg/mL}$				
	rtainty of the concentration is expressed as an expanded uncertainty in accordance with ISO 17025 and Guide 34 at the approximate confidence interval using a coverage factor of k = 2 and has been calculated by statistical analysis of our production system and					
incorporates uncertainty of the purity factor, material density, and balance and weighing technique.						
 Concentration is corrected for chromator 	raphic purity, residual water, residual solvents and resi	idual inorganics.				

Solution Standard Verification and Homogeneity

Standard		Verified Con	Verified Concentration (mg/mL)		Homogeneity	Т
Solution	Lot Number	Actual Results	Acceptance Crtieria	Actual Results	Acceptance Ortioria	
New Lot	FN051809-01	1.009	±3%	0.2	≤ 3%	

- Concentration is verified through multiple analyses and is calculated as the average of multiple analyses compared to an independently
- Homogeneity of the New Lot is ensured through rigorous production process controls statistically analyzed to evaluate risk and verified by analysis. The % RSD of samples pulled from across the lot demonstrate homogeneity of the New Lot.

Traceability

- Gravimetrically prepared using qualified balances calibrated semi-annually by Mettler Toledo using NIST traceable weights. Calibration verification performed weekly and prior to each use utilizing NIST traceable weights. Each balance has been assigned a minimum weighing by Mettler Toledo taking into consideration the balance and installed environmental conditions to ensure weighing complies with USP tolerances of no more than 0.1% relative error
- Concentration is verified against an independently prepared 4-point calibration curve gravimetrically prepared using balances calibrated to NIS

Cerilliant certifies that this standard meets the specifications stated in this certificate and warrants this product to meet the stated acceptance criteria through the expiration/retest date when stored unopened as recommended. Product should be used shortly after opening to avoid concentration changes due to evaporation. Warranty does not apply to ampoules stored after opening.

Hara Szaulis

July 30, 2009

Conflict Competition R11 Prings Date Suite & Round Rock TX 78AAS 800-848-7837 / \$12-238.0074

FN051809-01 Revision 2 Page 2 of 6

Standard Solution Assay Parameters

Calibration Curve

Analysis Method:

Prodigy 5µ, 250 x 4.6 mm

Acetonitrile: 0.1% Phosphoric Acid in Water (35::65)

1.0 mL/min 210 nm

Calibration Curve: Linear Regression

Number of Points: 0.999 Linearity (r):

	Neat L	Mat	terrai	L	at	а
--	--------	-----	--------	---	----	---

Mobile Phase:

Flow Rate:

Wavelength

Compound Name:

Chemical Formula CAS Number

CadhaOa 58543-16-1 976.01

MT	Maranial	Characteristics	Commence
\mathbf{v}_{cut}	машении	Characterization 1 4 1	Summarv

Treat States at Crist actor Edition States y				
Analytical Test	Method	Results		
Primary Chromatographic Purity by HPLC/PDA Analysis	SP10-0102	98.4%		
Secondary Purity by Thin Layer Chromatography	SP10-0106	Single Spot, R _f = 0.62		
Identity by LCMS Analysis	SP10-0107	Consistent with Structure		
Identity by ¹ H-NMR Analysis	USP <761>, SP10-0116	Consistent with Structure		
Residual Solvent Analysis by GC/FID Headspace	AM1087 ¹	1.19%		
Residual Water Analysis by Karl Fischer Coulometry	USP <921>, SP10-0103	5.58%		
Inorganic Content by Microash Analysis	SP10-0135	< 0.1%		
Heavy Metals Analysis by ICP/MS	Outsourced	Not Detected for Lead and Arsenic		
Specific Rotation	SP10-0133	$[\alpha]^{25}_{D} = -30.2^{\circ}$		
- Prince and a second	37.10 0.22	(c =0.39, ethanol::water (50::50))		
Purity Factor		91.7%		

- Primary purity is calculated as the average of two independently performed analyses utilizing two different methods. Acceptance criteria requires the purity values to be within 0.5% of each other
- The primary chromatographic purity value is used to calculate the Purity Factor
- · A secondary chromatographic purity method is utilized as a control.
- Purity Factor = [(100 wt% residual solvent wt% residual water wt% residual inorganics) x Chromatographic Purity/100].
- Purity factor does not include adjustment for chiral and/or isotopic purity.
- Validated analytical method

© 2010 Cerilliant Corporation

Carilliant Corporation 811 Paloma Drive, Suite A, Round Rock, TX 78665 800-848-7837 / 512-238-9974

S-017 FN060409-01 Revision 0 Page 1 of 3

Certificate of Analysis

ISO OUIDE 34 ISO/IEC 17025 150 9001:2000

Rebaudioside A Impurities Mix-6

Catalog Number: S-017 FN060409-01 Solution Lot: Retest Date: August 2010

Solvent: Acetonitrile::Water (1::1) Not less than 1 mL Volume per Ampule: Storage: Refrigerate or freeze.

For laboratory use only. Not suitable for human or animal consumption. Intended Use:

- · Retest Date stability studies ongoing. Certificate of Analysis will be updated upon completion of retest.
- before diluting to the desired concentration.

Component	Chromatographic Purity	Concentration	
Rebaudioside B	86%	100.1 ± 0.6 μg/mL	
Rebaudioside D	92%	$100.1 \pm 0.6 \mu \text{g/mL}$	
Steviol	99%	$100.0 \pm 0.6 \mu \text{g/mL}$	
Stevioside	92%	$100.1 \pm 0.6 \mu \text{g/mL}$	
Steviolbioside	92%	$100.1 \pm 0.6 \mu \text{g/mL}$	
Rubusoside	98%	100.1 ± 0.6 μg/mL	

- Uncertainty of the concentration is expressed as an expanded uncertainty in accordance with ISO 17025 and Guide 34 at the approximate 95% confidence interval using a coverage factor of k = 2 and has been calculated by statistical analysis of our production system and incorporates uncertainty of the purity factor, material density, and balance and weighing technique
- · Concentration is corrected for chromatographic purity, residual water, residual solvents and residual inorganic

Traceability

- · Gravimetrically prepared using qualified balances calibrated semi-annually by Mettler Toledo using NIST traceable weights. Calibration verification performed weekly and prior to each use utilizing NIST traceable weights. Each balance has been assigned a minimum weighing by Mettler Toledo taking into consideration the balance and installed environmental conditions to ensure weighing complies with USP tolerances of no more than 0.1% relative error.
- Concentration is verified against an independently prepared 4-point calibration curve gravimetrically prepared using balances calibrated to NIS

Cerilliant certifies that this standard meets the specifications stated in this certificate and warrants this product to meet the stated acceptance criteria through the expiration/retest date when stored unopened as recommended. Product should be used shortly after opening to avoid concentration changes due to evaporation. Warranty does not apply to ampoules stored after opening.

July 1, 2009

Carilliant Corporation 811 Paloma Drive, Suite A., Round Rock, TX 78665 800-848-7837 / 512-238-9974

S-017 FN060409-01 Revision 0 Page 2 of 3

Standard Solution Assay Parameters

Calibration Curve

Analysis Method: HPLC/UV Column: Mobile Phase:

Prodigy ODS 3, 4.6 x 250 mm

Calibration Curve: Number of Points:

Acetonitrile: 0.1% H_sPO₄ in water (35::65)

Flow Rate: 1.0 mL/min Wavelength: 210 nm

Compound	Verifie	d Concentration	%RSD - Homogeneity		
	μg/mL	Acceptance Criteria	90	Acceptance Criteri	
Rebaudioside B	99.9	± 5%	0.1	≤ 3%	
Rebaudioside D	99.1	± 5%	0.2	≤ 3%	
Steviol	101.9	± 5%	0.2	≤ 3%	
Stevioside	99.5	± 5%	0.3	≤ 3%	
Steviolbioside	100.9	± 5%	0.2	≤ 3%	
Rubusoside	100.6	± 5%	0.2	≤ 3%	

- Concentration is verified through multiple analyses and is calculated as the average of multiple analyses compared to an independently prepared calibration curve.
- Homogeneity is ensured through rigorous production process controls statistically analyzed to evaluate risk and verified by analysis. The %RSD of samples pulled from across the lot demonstrate homogeneity.

Compound	Lot Number	Tormula	Molecular Weight	Chromatographic Purity	Residual Solvent	Residual Water	Residual Inorganics	Purity Factor
Rebaudioside B	PN021209-02	C ₂₈ H ₅₀ O ₁₈	804.87	86.11%	0.06%	4.1796	<0.1%	82.47%
Rebaudioside D	PN021209-03	C ₃₀ H ₁₀ O ₂₈	1129.15	91.51%	0.22%	4.575	<0.1%	87.12%
Steviol	PN021209-07	C20H20O3	318.45	99.22%	1.74%	1.55%	<0.1%	95,52%
Stevioside	PN021209-06	$C_{xx}H_{xx}O_{1x}$	804.87	92.33%	0.86%	4.44%	<0.1%	87.44%
Steviolbioside	PN021209-05	$C_{32}H_{50}O_{13}$	642.73	92.02%	0.45%	9.86%	<0.1%	82.53%
Rubusoside	PN021209-04	CapHseOta	642.73	98.32%	0.42%	3.90%	<0.1%	94.07%

Cerilliant Corporation 811 Paloma Drive, Suite A, Round Rock, TX 78665 800-848-7837 / 512-238-9974

A Comparison of Approaches

	<u> </u>				
	Cerilliant Snap-N-Shoot® Certified Solution Standards	Certified Neat Reference Material (solutions from neat materials)			
Accuracy & Stability					
Lot to lot consistency / Reproducibility	One lot available for an extended time providing consistency throughout supply chain analysis	More variability and labor costs & inconsistency of reference may lead to possible product batch investigation and/or rejections			
Concentration Accuracy	Consistent across lot & preserved in ampouled format	Cannot be ensured – Hygroscopicity of the neat affects concentration from weighing to weighing Stored bulk solutions can concentrate over time due to evaporation of solvent			
Stability over time	Years	Weeks-months			
Cost Efficiencies					
Labor	Eliminated labor required to analyze neat, weigh, an prepare stock solutions	More labor; more cost			
Materials	Reduced material costs	Increase in material usage due to frequent weighings (important on costly impurities)			
Convenience of use	"Snap (dilute) and Shoot"	Weigh, dilute, verify			

Problem

Reb A and Reb A impurities are challenging to accurately analyze using a single method

Different methods produce different results

Residual impurities in and hygroscopicity of neat materials mean care must be taken in preparation of assay reference solutions

Solution

Use of high quality certified ampouled solution standards eliminates issues of method variability and difficulties with accurately preparing assay reference solutions

Cerilliant offers Snap-N-Shoot® Certified Solution Standards of Rebaudioside A and Rebaudioside A impurities in an accurate and convenient format for quantitative & qualitative testing of Reb A ingredients

science, smarter.

Cerilliant Quality

ISO GUIDE 34

ISO/IEC 17025

ISO 9001:2008

GMP/GLP