Certified Solution Standards and Reagents for Therapeutic Drug Monitoring Applications

CERTIFIED SOLUTION STANDARDS & REAGENTS FOR THERAPEUTIC DRUG MONITORING APPLICATIONS

Abstract

Highly pure, well-characterized, solution based standards or reagents are a good and efficient alternative to the use of neat materials in clinical, toxicology and therapeutic drug monitoring applications. The accuracy, stability, and consistency of these materials is critical to ensure accuracy of results in the analytical laboratory, in clinical applications and medical device performance.

Certified Solution Standards and Reagents offer a significant advantage over neat reference materials in terms of accuracy, consistency and stability. Long term stability of solution based materials is achievable when appropriate parameters are chosen in the design, preparation, packaging, and storage.

This poster presents the development and design of Certified Solution Standards and Reagents providing examples of premade solutions that exhibit multi-year stability. Factors critical to the selection of the analytes, diluents, storage and stability are discussed. These include: raw material handling, characterization and potency, certification and qualification of solutions, and homogeneity and stability of the solution. Certified Reference Standard Solutions and Reagents prepared in a diluent that promotes stability and packaged under argon in flame sealed ampoules can be stable for many years.

Multiple examples are presented. Also presented is a comparison of certified ampouled solutions vs. neat reference materials.

Certified Solution Standards and Reagents ensure accurate, consistent and reliable results in clinical and toxicology applications and medical device performance.

REFERENCE STANDARDS ARE CRITICAL TO THE QUANTITATION OF THERAPEUTIC DRUGS IN A CLINICAL SETTING

Results are only as accurate as the reference!

Accurate quantitative results depend on

The purity of the reference material

 The accuracy in the preparation of the solution used in the analysis

TYPES OF REFERENCE STANDARDS AND HOW THEY ARE USED

- Certified neat reference standard
- Analysts prepare volumetric solutions by weighing the neat materials and diluting just prior to use
- This may be a stock solution, calibration curve

Ampouled Certified Solutions

or control

- Analysts use as-is or dilute volumetrically to stocks, calibrators and/or controls
- Ampouled solutions are widely used in the clinical, forensic and environmental testing industries

CHARACTERISTICS OF GOOD **REFERENCE STANDARDS**

- Thoroughly characterized components
- Use of accurate, calibrated pipettes & balances
- Analyzed to verify accuracy & consistency
- Traceability of all components
- High purity diluents and/or stabilizers, compatible with the compound(s)

quality Ampouled Certified Solution Standards = Good Reference Standards

MPOULED CERTIFIED SOLUTIONS – A BETTER ALTERNATIVE IN MOST CASES				
	AMPOULED CERTIFIED SOLUTIONS	LAB PREPARED (SOLUTIONS FROM NEAT MATERIALS)		
Stability over time	Years	Weeks-months		
Lot to lot consistency / reproducibility	Large batches: large weighings, one lot available for an extended time and across locations	Frequent smaller weighings, multiple lots, repeat qualification		
Homogeneity / concentration	Ampoule to ampoule and across the lot	Cannot be ensured – precipitation/evaporation Hygroscopicity of the neat can affect concentration from weighing to weighing		
Convenience of use	"Snap (dilute) and Shoot"	Weigh, dilute, qualify		
Efficiency	Reduced labor – eliminates bench preparation and certification Controlled substances can be exempt in solution	Repeated weighing, handling, qualification Handling of neat controlled substances requires additional documentation		
Material usage / cost	Eliminates waste – stable single use format	More frequent preparation – more disposal		
Contamination risk	Single use format – very low risk	Multiple use format – higher risk for bulk contamination		
Unstable / labile materials	Not suitable	Best prepared fresh		

PREPARATION OF CERTIFIED SOLUTIONS

NEAT MATERIAL

Complete characterization of the neat material is critical to the accuracy of the solution

Certification should include:

- Purity and impurities
- Residual water, solvent, inorganic content (KF, headspace, micro-ash/ROI)
- Chromatographic purity, resolution of impurities (LC, GC)
- Quantitation by assay (LC, GC, titration)
- Verification of identity (NMR, FTIR, MS)

Considerations

- Are vendor certified values complete, accurate and reliable?
- Reliability/repeatability of method?
- Is the compound more stable as salt vs. free base?
- Is the compound stable in the diluent? – Is there an adjustment for salt form?
- Does the vendor provide uncertainty on the purity factor (potency)?

PREPARATION OF CERTIFIED SOLUTIONS

PURITY FACTOR (POTENCY) - SOURCES OF UNCERTAINTY

- Chromatographic purity homogeneity of the neat and analytical uncertaint
- Residual solvent sample preparation, weighing, and analytical response
- Residual water sample weighing, influence of ambient moisture, analyst technique, and instrument tolerances
- Inorganic content sample weighing and homogeneity of the sample Purity Factor = [(100 - wt% residual solvent -
- wt% residual water wt% residual inorganics) x Chromatographic Purity/100]
- Assay value reference standard uncertainty, sample preparation, and analytical uncertainty

PREPARATION OF CERTIFIED SOLUTIONS 🖊

DILUENT/SOLVENT CONSIDERATIONS

Solubility

- Does the target compound dissolve at the required concentration? - Precipitation can occur over time or at reduced storage temperatures
- Compatibility with analysis
- Solvent interferences in the chromatogram: UV cut-off; baseline effects
- Non-polar solvents not ideal with reverse phase HPLC
- Water not compatible with GC

Solvent stability

THF/ethers form peroxides

Compound stability in the solvent

- Protic solvents cocaine degrades in methanol over time but is stable in acetonitrile long term
- Oxazepam decomposes over time in methanol

Purity, identity and traceability

_

PREPARATION OF CERTIFIED SOLUTIONS

SOLUTION PREPARATION

Neat Material Handling

- Air or moisture sensitive compounds handled in inert atmosphere – Use appropriate PPE – toxic and highly labile compounds must
- be handled in a glove box

Neat Material Weighing

- Use a qualified balance appropriate for the amount to
- be weighed
- Calibrated with NIST traceable weights
- 5-place, 6-place, 7-place?
- Qualified to <0.1% relative error per USP
- Use weighing techniques that minimize error
- Tongs vs. gloved hands
- Balance equilibration
- Material acclimated to conditions
- Control of atmospheric conditions (vibration, a
- movement, temperature) - Contamination - weighing operations should be isolated
- from other operations
- Larger weighings are more accurate

PREPARATION OF CERTIFIED SOLUTIONS

BALANCE SELECTION AND WEIGHING **TECHNIQUE ARE CRITICAL TO** WEIGHING ACCURACY

- Balance selection: Balances should be qualified and assigned minimum weighings specific to installed conditions and lab specified weighing techniques
- Weighing techniques: Handling of samples during weighing can have significant impact on weighing accuracy and uncertainty
- Certified Solutions prepared in bulk with larger weighing have reduced weighing error compared to smaller weighings typical when neat materials are weighed at the bench

WEIGHING ACCURACY						
Balance	7-place	6-place	5-place	4-place		
Balance Resolution	0.0001 mg	0.001 mg	0.01 mg	0.1 mg		
Sample Mass Expanded Uncertainty*						
1 mg	0.045%	0.16%	8.0%	45.0%		
10 mg	0.0045%	0.016%	0.80%	4.5%		
100 mg	0.00075%	0.0017%	0.080%	0.45%		
1000 mg	0.00060%	0.00024%	0.0080%	0.045%		
CerilliantMinWt.**	1 mg	3 mg	20 mg	125 mg		

*Calculated using typical values reported by Mettler Toledo and following the methods outlined in the "ISO Guide to the Expression of Uncertainty in Measurement" and includes contributions from standard deviation, sensitivity, and linearity.

**Minimum weights calculated by Mettler during balance qualification to achieve USP specified minimum relative error of NMT 0.1%

PREPARATION OF CERTIFIED SOLUTIONS

SOLVENT ADDITION

Gravimetric is more accurate than volumetric addition

METHOD	BATCH SIZE			
METHOD	10 mL	100 mL	1000 mL	
Volumetric flask standard error Source: ASTM E288-03, Standard specification for laboratory glassware, 2003	0.20%	0.08%	0.03%	
Analytical balance uncertainty Balance Type Typical values per Mettler Toledo	5 Place 0.001%	5 Place 0.0001%	1 Place 0.009%	
Values established by Cerilliant based on typical values by Mettler and Cerilliant weighing SOPs	0.0036%	0.00125%	0.009%	

EMPERATURE VS. DENSITY

Change in density with temperature can affect volumetric preparation of a solution but can be controlled by gravimetric addition of solvent

20-30°C expansion

15 20 25 30 35 temperature (°C)

0.57% difference in concentration when prepared volumetrically at 20° vs. 25°C

Bench preparation of sample and reference on different days may create variability due to density change

Source: Handbook of Thermophysical and Thermochemical Data, CRC Press

AVIMETRIC APPROACH

Add solvent by weight

- Target solvent weight calculated from target volume by adjusting for density

- Actual solvent weight can be calculated back into volume to report concentration
- in mg/mL

Weighing has lower error than

olumetric flask – Standard error for balance vs. flask

- Balance read-out vs. visual fill line
- Weighing tapes provide traceability
- Control of lot to lot consistency
- Control of temperature/density variable
- Subjectivity of volumetric preparation technique

Use of high quality, qualified, balance has lower error than Class-A volumetric flask

PREPARATION OF CERTIFIED SOLUTIONS

DISPENSING & PACKAGING

- Solution standards prepared in bulk can be dispensed into single use volumes and flame sealed under inert atmosphere
- Rigorous process controls ensure
- Consistency of volume dispensed
- Homogeneity from vial to vial and across the lot
- No contamination
- No degradation

Accuracy

Ampouled solutions provide long-term stability

- - HPLC DAD1 A, Sig=285,8 Ref=off (LC40408\V0429821.D) 0 2.5 5 7.5 10 12.5 15 17.5 Cerilliant Corporation 811 Paloma Drive, Suite A, Round Rock, TX 78665 800-848-7837 / 512-238-9974
- Consistency

- Purity
- Traceability
- Stability

SOLUTION STABILITY

 Column:
 Eclipse XDB-C8 5µ 4.6 x 250mm

 Mobile Phase:
 Acetonitrile::20mM Ammonium Acetate Buffer pH3 (15::85) Isocratic
 Flow Rate: 1.2 mL Wavelength: 285 nn Data File Name: C:\HPCHEM\1\DATA\LC40408\V0429821.D
 Method File:
 RMA013.M

 Acquired:
 April 29, 2008 4:54 PM
 Peak # Ret Time Area Height Area %
 3.43
 1.01
 0.10
 0.00

 3.88
 0.26
 0.05
 0.01

 4.69
 1751.35
 109.44
 99.9

Comparison to a primary source or certified second source – curve/calibration standard

Comparison of multiple independent preparations

Lot-to-lot consistency verified by comparing to the previous lot

Homogeneity Across the batch of ampoules/vials

Test for contamination and degradation

– For all raw materials and calibrations

Established through comparison to older lots

 Comparison to a primary source or certified second source Sealed amber ampoules protect from light and air

Inert gas purge – displaces oxygen

• Silanization can reduce absorption to glass

 Sealed ampoules prevent concentration changes due to evaporation, absorption of moisture, and degradation

Solution stability is assessed to determine shelf life

Established by assay comparison to fresh solution

Retest dates assigned to evaluate stability at set intervals

Expiration dates established over time

• Sealed ampouled solutions can exhibit excellent long term stability (>5 years for some)

SOLUTION STABILITY EXAMPLES

Stability Criteria

• No loss of chromatographic purity from originally established neat material value (within 0.5%) • Concentration meets original acceptance criteria – reported differences may be reflective of method variability

COMPOUND/SOLVENT	AGE OF STABILITY SAMPLE	% DIFFERENCE IN CON STABILITY LOT	
6-Acetylmorphine /acetonitrile	5.5 years	-2.3	
Nortriptyline HCl / methanol	5 years	-2.9	
Codeine / methanol	5.5 years	-0.7	
Haloperidol / methanol	6 years	-0.4	
Fentanyl /methanol	5 years	-1.3	

6-ACETYLMORPHINE

Catalog Product: .. A-003, 100 µL in acetonitrile

..GC/FID Analysis Method: . DB-35ms 30 m x 0.53 mm ID, 1.0 µm film thickness .. 60°C to 280°C at 40°C/min hold 7 min Temp program:.. .. Cool-on-Column Injector Temp: . 325°C 230 nm Detector Temp: Calibration Curve: .. Linear Regression

Number of Calibration Points: ... 3

Linearity (r) ... 0.995

SOLUTION	LOT NUMBER	MANUFACTURE DATE	% CONC. DIFF FROM NEW PREP	SOLUTION PURITY
New Lot	FC022707-01A	3 / 2007	-	99.4%
Previous Lot	FC040405-02B	9 / 2005	2.0	99.2%
Stability Lot	34265-11B	7 / 2001	-2.3	99.5%

NORTRIPTYLINE HCI

Catalog Product:	N-907, 1 mg/ml in methanol
Analysis Method:	HPLC/UV
Column:	Betasil Phenyl 4.6 x 150 mm
Mobile Phase:	Acetonitrile::0.01M Phosphate Buffer (80::20)
Flow Rate:	1.0 mL/min
Wavelength:	254 nm
Calibration Curve:	Linear Regression
Number of Points:	4
Linearity (r):	0.999

H₃C—O

SOLUTION	LOT NUMBER	MANUFACTURE DATE	% CONC. DIFF FROM NEW PREP	SOLUTION PURITY
New Lot	FN071607-01	7 / 2007	-	99.9%
Previous Lot	35358-19A	7 / 2006	-0.7	99.9%
Stability Lot	35053-96A	5 / 2002	-2.9	99.9%

CODEINE

Catalog Product: .. C-006, 1 mg/ml in methanol

Standard Analysis Method: UV- Vis Wavelenath .. 285 nm Slit Width: Response Calibration Curve: Linear Regression Number of Calibration Points:4

Solution Purity Analysis Method: HPLC Column:

. Betasil Phenyl 4.6 x 150 mm Mobile Phase: . Acetonitrile::0.01M Phosphate Buffer (70::30) Flow Rate:

. 0.8 mL/min Wavelength: ... 285 nm

					200 -
SOLUTION	LOT NUMBER	MANUFACTURE DATE	% CONC. DIFF FROM NEW PREP	SOLUTION PURITY	150
New Lot	FE072108-01	7 / 2008	-	99.4%	
Previous Lot	35012-94D	8 / 2006	2.4	99.5%	50-
Stability Lot	35053-15B	1 / 2003	-0.7	99.4%	
					STABILITY LOT

AUTHORS

Isil Dilek PhD, Kevin Gates, Rebecca Johnson, Sherri Pogue, Mitzi Rettinger, Uma Sreenivasan PhD

	, i
	VWD1 A, Wavelength=254
mAU -	
-	
300 -	
-	
-	
250 -	
-	
-	
200 -	
-	
-	
150 —	
100 -	
-	

	104/D4 A 14/	(1.0)	
mAll -	VWD1 A, wavelength=285 n	m (LC [.]	10808/1
		914	
-			
200 -			
-			
- 150 -			
-			
-			
100 -			
-			
50 -			
	~		2

FID2 B, (S:\GC\GC2\2007\GC20307\B0316724.D)

4.634 5.565 5.6049 6.580 6.580 8.863 8.863 9.485 10.050 110.050

4.638 6.052 7.987 7.987 7.987 7.987 7.987 7.987 10.051

STABILITY LOT

NEW LOT

PREVIOUS LOT

NEW LOT

PREVIOUS LOT

PREVIOUS LOT

NEW LOT

Cerilliant[®] science, smarter.®

F-

HALOPERIDOL

FENTANYL

Catalog Product:

Column:

Flow Rate:

Wavelength

Linearity (r)

Calibration Curve:

Number of Points:

New Lot

Stability Lot

Previous Lo

Mobile Phase:

Catalog Product:	H-030, 1 mg/ml in methanol
Analysis Method:	HPLC/UV
Column:	Betasil Phenyl 4.6 x 150 mm
Mobile Phase:	Acetonitrile::0.02M Ammonium Acetate, pH=3
Flow Rate:	1.0 mL/min
Wavelength:	245 nm
Calibration Curve:	Linear Regression
Number of Points:	4
Linearity (r):	0.999

SOLUTION	LOT NUMBER	MANUFACTURE DATE	% CONC. DIFF FROM NEW PREP	SOLUTION PURITY
New Lot	29877-13G	1 / 2007	-	99.8%
Previous Lot	29877-13F	8 / 2005	0.3	99.8%
Stability Lot	29877-13B	11 / 2000	-0.4	99.8%

.. HPLC/UV

. 1.0 mL/min

.. Linear Regression

SOLUTION LOT NUMBER MANUFACTURE DATE % CONC. DIFF FROM NEW PREP SOLUTION PURITY

2 / 2008

3 / 2006

1 / 2003

. 220 nm

. 0.999

.. F-002, 100 µg/mL in methanol

. Betasil Phenyl 4.6 x 150 mm

. Acetonitrile::0.01M Phosphate Buffer (70::30)

 H_3C

99.8%

99.8%

99.9%

AMPOULED CERTIFIED SOLUTIONS ARE EFFICIENT, ACCURATE & CONSISTENT • Single use format produced in large lots

-0.5

- Low risk of contamination
- More efficient use of material
- Improved consistency and accuracy

E022508-02

35315-35B

29875-71H

- Larger weighings
- Single lot used over longer periods of time and across locations
- Reduces labor and time for routine standard preparation at the bench Sealed containers and inert environment protect against evaporation and degradation
- Solution stability established through testing
- DEA exemptions for solutions of controlled substances available

High quality Certified Solution Standards and Reagents are an excellent alternative to the use of neat materials for clinical and toxicology applications