The Uncertainty of Reference Standards

A Guide to Understanding Factors Impacting Uncertainty, Uncertainty Calculations and Vendor Certifications

Authors: Ning Chang PhD, Isil Dilek PhD, Kevin Gates, Huahua Jian PhD, Sherri Pogue, Uma Sreenivasan PhD

© 2009 Cerilliant Corporation
Introduction

Certified ampouled solution reference standards are widely used in the forensic/toxicology, clinical/diagnostic, and pharmaceutical industries to support forensic investigations, therapeutic monitoring, and clinical decisions.

Analytical results are only as good as the calibrators used in the analysis.

Accuracy is dependent on: robustness of the analytical method, preparation of samples and standards, & the quality, purity and accuracy of the reference.
Uncertainty

Uncertainty is “a parameter associated with the result of a measurement that characterizes the dispersion of the values that could reasonably be attributed to the measurand.”

*International Vocabulary of Basic and General Terms in Metrology

For solution reference standards, whether purchased or prepared at the bench, the measurand in question is the concentration of the solution (specified in units of mass per volume).

Understanding uncertainty variables is important for laboratories seeking to comply with ISO/IEC 17025 requirements and for those preparing reference solutions from neat materials at the bench.

Uncertainty is an estimation
Factors Impacting Concentration

• Neat material purity & homogeneity
• Solution preparation techniques/methods
• Weighing equipment & procedures
• Pipettes and flasks
• Solution storage, handling, & homogeneity
Cerilliant’s Approach to Reference Solution Preparation

- Complete characterization of neat materials
- Qualified and controlled weighing processes
- Gravimetric addition of solvent
- Sealed into ampoules under argon
- Analytical verification of concentration, purity, & homogeneity
- Shelf life determined through real-time stability studies
Methodology for Uncertainty

Kragten Spreadsheets and differential perturbation

Cerilliant’s Measurement Equation

\[C = \frac{(m_{v+a} - m_v)dp}{(m_{f+s} - m_f)} \pm U \]

Where:
- \(C \) = Concentration of solution (mass/volume)
- \(m_{v+a} \) = mass of analyte + vial
- \(m_v \) = mass of empty vial
- \(m_{f+s} \) = mass of flask + solvent
- \(m_f \) = mass of empty flask
- \(d \) = density of solution
- \(U \) = the assigned expanded measurement uncertainty
Factors Impacting Uncertainty of Solution Standard Preparations

Cerilliant Model

- Neat Material Purity Factor
 - Chromatographic Purity
 - Residual Water Analysis
 - Residual Solvent Analysis
 - Inorganic Content Analysis

- Solvent Addition Solution Density
 - Mass measurement
 - Temperature
 - Instrument Tolerances

- Mass Measurement
 - Weighing Techniques
 - Balance Sensitivity & Linearity
 - Balance Selection, Qualification – Minimum Weights
 - Uncertainty of Solution Concentration
Uncertainty Associated with Purity of Neat Material

• Is the neat material certification adequate for reference standard use? – Includes Purity and Residuals?

• The Cerilliant Purity Factor mass balance equation – often referred to as “potency” on vendor COA’s – is used to calculate the amount of material needed to achieve accurate concentration of the solution standard.

\[
PurityFactor = \left[100 - (\text{wt}\% \text{OVI}) - (\text{wt}\% \text{H}_2\text{O}) - (\text{wt}\% \text{ROI}) \right] \times \frac{\text{ChromPurity}}{100} \pm U
\]

wt%OVI: the weight percentage of residual solvents present in the neat material.
wt%H2O: the weight percentage of water present in the neat material.
wt%ROI: the weight percentage of inorganic content in the neat material.
ChromPurity: based on the chromatographic purity of the specified primary purity method, either GC or HPLC.
U = the assigned expanded measurement uncertainty
Key Elements of Uncertainty
Neat Material Purity Factor

Residual Water Analysis

\[u_{kf} = 0.03990\% \text{ w/w} \]

Residual Solvent Analysis

\[u_{ovi} = 0.01746\% \text{ w/w} \]

Chromatographic Purity

\[u_{(ChromPurity)} = \frac{0.25\%}{\sqrt{3}} = 0.144\% \]

Method repeatability

Inorganic Content Analysis

\[u_{(wt\%ROI)} = \frac{0.4\%}{\sqrt{3}} = 0.231\% \]

Method repeatability

Tolerances

Mass measurement

Sensitivity, robustness, accuracy

Specifications

Purity Factor Uncertainty

\[u_{pf} = 0.292\% \]

Cerilliant Model
Purity Factor Considerations

• Appropriate methods for purity determination
• Quantitation of residual impurities
 – Water
 – Solvent
 – Inorganics
• Use of a mass balance equation
• Stability – purity and residuals
Factors Impacting Uncertainty of Solution Standard Preparations

Every step of the process has uncertainty and must be evaluated.

Neat Material Purity Factor

\[u_{pf} = 0.292\% \]

Preparation Steps

Solvent Addition
Solution Density

Chromatographic Purity

Residual Water Analysis

Residual Solvent Analysis

Inorganic Content Analysis

Mass measurement

Temperature

Instrument Tolerances

Weighing Techniques

Balance Sensitivity & Linearity

Balance Selection, Qualification – Minimum Weights

Uncertainty Of Solution Concentration

Mass Measurement
Mass measurement uncertainty included the following components:

- \(u_{\text{sens}} \) Uncertainty due to the balance’s sensitivity tolerance. The sensitivity tolerance includes the uncertainty of the balance’s built-in reference weight used for the internal calibrations.

- \(u_{\text{lin}} \) Uncertainty due to non-linearity of the characteristic curve.

- \(s_p \) Repeatability includes effects from readability, drift, static, ambient drafts, thermal drafts, vibration, gross/net weight, eccentric loading, temperature stability, EMI/RFI, weighing procedure, installation, tare container geometry, adsorption/absorption, and balance settings.

Repeatability is specific to YOUR environment, YOUR balances, and YOUR weighing technique.
Mass Measurement Considerations

Appropriate balance selection and qualification are critical to ensuring accuracy of the solution standard and can have a significant impact on the overall uncertainty.

- Improper balance selection can lead to high levels of uncertainty.

<table>
<thead>
<tr>
<th></th>
<th>Importance of Balance Selection and Mass Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample Mass</td>
<td>Mass Uncertainty</td>
</tr>
<tr>
<td></td>
<td>5-place Balance</td>
</tr>
<tr>
<td>1 mg</td>
<td>8.0%</td>
</tr>
<tr>
<td>10 mg</td>
<td>0.80%</td>
</tr>
<tr>
<td>100 mg</td>
<td>0.080%</td>
</tr>
<tr>
<td>1000 mg</td>
<td>0.0080%</td>
</tr>
</tbody>
</table>

Cerilliant Minimum Weighing Requirements

<table>
<thead>
<tr>
<th>Balance</th>
<th>7-place</th>
<th>6-place</th>
<th>5-place</th>
<th>4-place</th>
</tr>
</thead>
<tbody>
<tr>
<td>Balance Resolution</td>
<td>0.0001 mg</td>
<td>0.001 mg</td>
<td>0.01 mg</td>
<td>0.1 mg</td>
</tr>
<tr>
<td>Minimum Weighing</td>
<td>1 mg</td>
<td>3 mg</td>
<td>20 mg</td>
<td>125 mg</td>
</tr>
</tbody>
</table>

Minimum weighings established to achieve USP specified minimum relative error of NMT 0.1%.
Mass Measurement Considerations

Weighing Technique can significantly influence uncertainty

- Appropriate assignment of uncertainty of solution standard preparation must consider weighing technique in addition to balance selection and qualification.

- Accuracy of weighing can be influenced by:
 - tongs vs. gloved hands
 - balance equilibration time
 - sample and solvent temperature
 - ambient temperature
 - vibrations
 - movement of air

- Air currents, drafts around the balance, and additional vibrational forces on the pan can significantly affect balance repeatability.

For Example:
Cerilliant studies indicate that when gloved hands are used as opposed to tongs for handling sample vials, uncertainty of mass measurement increased approximately 10 fold.
Repeatability experiments are used to determine preparer specific uncertainty for weighing operations.

<table>
<thead>
<tr>
<th>Balance</th>
<th>XP6400</th>
<th>XP1230S</th>
<th>XP205</th>
<th>XP56</th>
<th>UMX2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Place</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Place</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 Place</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 Place</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 Place</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Process Scale</td>
<td>1-10 Ltrs</td>
<td>100-250 mL</td>
<td>25 mg-10 g</td>
<td>5 mg</td>
<td>1 mg</td>
</tr>
<tr>
<td>Approx. Gross Mass</td>
<td>1 kg</td>
<td>200 g</td>
<td>2.1 g</td>
<td>2.005 g</td>
<td>41 mg</td>
</tr>
<tr>
<td>Tare Container</td>
<td>none</td>
<td>none</td>
<td>2 mL glass vial</td>
<td>2 mL glass vial</td>
<td>aluminum micro weigh pan</td>
</tr>
<tr>
<td>Ref./Net Mass (g)</td>
<td>1000</td>
<td>200</td>
<td>0.1</td>
<td>0.005</td>
<td>0.001</td>
</tr>
<tr>
<td>Mean</td>
<td>1000.000</td>
<td>200.0005</td>
<td>0.099995</td>
<td>0.0050023</td>
<td>0.00100193</td>
</tr>
<tr>
<td>Standard Deviation</td>
<td>0.032</td>
<td>0.0012</td>
<td>0.000024</td>
<td>0.0000018</td>
<td>0.00000035</td>
</tr>
<tr>
<td>%RSD (s_p)</td>
<td>0.00324%</td>
<td>0.00060%</td>
<td>0.02350%</td>
<td>0.03500%</td>
<td>0.0352248%</td>
</tr>
</tbody>
</table>
Uncertainty of the Mass Measurement u_m

- The largest standard deviation observed in repeatability tests per process was used to calculate the uncertainty value for weighing operations

 \[u_m = 0.035\% \]

- The term for uncertainty from the weighing operation is applied to each weighing operation in the measurement equation for solution standard preparation, mass measurement of the analyte and mass measurement of the solvent.

\[
u_m = \sqrt{s_p^2 + u_{lin}^2 + u_{sens}^2}
\]

\[
C = \frac{(m_{v+a} - m_v)dp}{(m_{f+s} - m_f)} \pm U
\]
Solvent Addition
Temperature vs. Density

Change in density with temperature can affect volumetric preparation of a solution but can be controlled by gravimetric addition of solvent.

Density of Methanol

\[y = -0.0009x + 0.8103 \]
\[R^2 = 0.9993 \]

0.57% difference in concentration when prepared volumetrically at 20°C vs. 25°C.

Bench preparation of sample and reference on different days may create variability due to density change.

Source: Handbook of Thermophysical and Thermochemical Data, CRC Press
Addition of Solvent / Density Uncertainty u_d

• Gravimetric addition controls for variation of solvent density (and therefore volume) with temperature
 - traceability to SI units of mass.
 - Solvent mass required is calculated from the density
 - Solvent is added by weight
 - Solution mass is converted back to volume by dividing the mass by the density.

(For low concentration solutions (< 2 mg/mL), the solution density is approximated using the density of the pure solvent)

• Density is measured using a Mettler Toledo Densito 30PX density meter which has a resolution of 0.0001 g/mL.
 - The uncertainty component for density was estimated based on instrument tolerances

$$u_d = \frac{0.001}{\sqrt{3}} = 0.000577 \text{ g/mL}$$
Calculation of the Combined Standard Uncertainty \((u_c)\) and Expanded Uncertainty \((U)\) of the Solution Standard Concentration

<table>
<thead>
<tr>
<th>Variable/Result Name</th>
<th>Lowest Modeled Value</th>
<th>Highest Modeled Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analyte mass</td>
<td>1 mg</td>
<td>5 g</td>
</tr>
<tr>
<td>Solvent mass</td>
<td>60 g</td>
<td>1.2 kg</td>
</tr>
<tr>
<td>Adjustment factor</td>
<td>1</td>
<td>1.01</td>
</tr>
<tr>
<td>Solution density</td>
<td>0.6 g/mL</td>
<td>1.2 g/mL</td>
</tr>
<tr>
<td>Batch volume</td>
<td>100mL</td>
<td>1000mL</td>
</tr>
<tr>
<td>Concentration</td>
<td>1 µg/mL</td>
<td>5 mg/mL</td>
</tr>
</tbody>
</table>

Inputs to the measurement equation for concentration could take on a wide range of values depending on batch volume, target concentration, solution density, and purity of analyte. Input values were, therefore, varied to provide models which yielded uncertainty values for at least 99% of gravimetrically prepared solution.

Over the range of models tested the relative expanded uncertainties varied little, reinforcing the value and importance of process controls employed.
Uncertainty of Solution Standard Preparations

Neat Material Purity Factor
\[u_{pf} = 0.292\% \]

Solvent Addition Solution Density
\[u_d = 0.000577 \text{ g/mL} \]

Mass Measurement

Temperature

Instrument Tolerances

Chromatographic Purity

Residual Water Analysis

Residual Solvent Analysis

Inorganic Content Analysis

Weighing Techniques

Balance Sensitivity & Linearity

Balance Selection, Qualification – Minimum Weights

Mass Measurement
\[u_m = 0.035\% \]

Uncertainty of Solution Concentration
\[u_c = 0.315\% \]
\[U = 0.63\% \ (k=2) \]

Cerilliant Model

\[C = \frac{(m_{v+a} - m_v)dp}{(m_{f+s} - m_f)} \pm U \]
Considerations

4 Points of Consideration

1. Thorough characterization of the neat material is essential to determine an accurate mass balance purity factor.
 - Characterization of the neat material should be appropriate for use
 - Should include both purity and residuals
 - Uncertainty contributions from neat material certification are significant

2. Actual practice in the laboratory can vastly influence uncertainty related to weighing operations.
 - Balance manufacturer specifications are insufficient
 - Repeatability assessment must be included

3. Gravimetric preparations provide greater control and traceability for standard preparation.
 - Volumetric dilutions should account for errors arising temperature/density effects and user error associated with visual read lines.

4. Variations or changes to any component of the solution standard preparation process can impact uncertainty and requires reassessment of uncertainty values.
<table>
<thead>
<tr>
<th>Considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>How was the uncertainty determined? What quality systems were used (such as ISO/IEC 17025 or ISO guide 34)?</td>
</tr>
<tr>
<td>What does the uncertainty value cover?</td>
</tr>
<tr>
<td>Is the uncertainty reported as an expanded uncertainty with a coverage factor? Are confidence intervals provided?</td>
</tr>
<tr>
<td>Is the neat material traceability and test data provided?</td>
</tr>
<tr>
<td>Is purity of the neat material considered in the uncertainty of the standard preparation? Was the purity method appropriate for the compound, sufficiently robust and repeatable?</td>
</tr>
<tr>
<td>What components are included in the Purity Factor assessment? Were residuals considered? What methods were used to determine these values?</td>
</tr>
<tr>
<td>Are environmental conditions such as temperature or density considered in the uncertainty statement?</td>
</tr>
<tr>
<td>Are balance and volumetric tolerances included those of the manufacturer alone or experimentally verified for the manufacturing process?</td>
</tr>
<tr>
<td>If the standard was diluted from a stock solution, does the uncertainty include uncertainty of the secondary dilution?</td>
</tr>
</tbody>
</table>
Concentration & Uncertainty of the gravimetric preparation expressed as:

$1.000 \pm 0.0006 \text{ mg/mL}$

Description of Cerilliant’s Uncertainty value & confidence interval:

“Uncertainty of the concentration is expressed as an expanded uncertainty in accordance with ISO 17025 and Guide 34 at the approximate 95% confidence interval using a coverage factor of $k = 2$ and has been calculated by statistical analysis of our production system and incorporates uncertainty of the purity factor, material density, and mass.”

Analytical Verification of Concentration & Homogeneity

Gravimetrically prepared concentration is verified analytically. Acceptance criteria incorporates variability of the analysis. Homogeneity is verified analytically by analyzing ampoules pulled from across the lot.

Traceability Statement describing traceability to SI units

“Gravimetrically prepared using qualified balances calibrated semi-annually by Mettler Toledo using NIST traceable weights. Calibration verification performed weekly and prior to each use utilizing NIST traceable weights. Each balance has been assigned a minimum weighing by Mettler Toledo taking into consideration the balance and installed environmental conditions to ensure weighing complies with USP tolerances of no more than 0.1% relative error.”
Neat Material Characterization Summary and Purity Factor Assignment

Shows detail of all analyses performed and results – allows confirmation of Purity Factor variables considered.
Acknowledgements and References

Acknowledgements:
• Ning Chang PhD, Isil Dilek PhD, Kevin Gates, Huahua Jian PhD, Sherri Pogue, Kristine Waddell

References:
• ISO/IEC 10725:2005, 2nd ed., “General Requirements for the competence of testing and calibration laboratories”
• International Organization for Standardization, “International Vocabulary of Basic and General Terms in Metrology”, International Organization for Standardization, 1993
• Arthur Reichmuth, “The Uncertainty of Weighing Data Obtained with Electronic Analytical Balances,” Mettler Toledo 2004